Iterative Solution of Singular Systems with Applications

This paper deals with efficient solution of singular symmetric positive semidefinite problems. Our motivation arises from the need to solve special problems of geotechnics, e.g. to perform upscaling analysis of geocomposites. In that and other applications we have to solve boundary problems with pure Neumann boundary conditions. We show that the stabilized PCG method with various preconditioners is a good choice for systems resulting from the numerical solution of Neumann problems, or more generally problems with a known small dimensional null space.

[1]  Radim Blaheta,et al.  GPCG–generalized preconditioned CG method and its use with non‐linear and non‐symmetric displacement decomposition preconditioners , 2002, Numer. Linear Algebra Appl..

[2]  Arnold Neumaier,et al.  Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization , 1998, SIAM Rev..

[3]  Z. Dostál,et al.  Cholesky decomposition with fixing nodes to stable computation of a generalized inverse of the stiffness matrix of a floating structure , 2011 .

[4]  Daniel B. Szyld,et al.  Iterative and semi-iterative methods for computing stationary probability vectors of Markov operators , 1993 .

[5]  Roman Kohut,et al.  Micromechanics of geocomposites: CT images and FEM simulations , 2013 .

[6]  C. Farhat,et al.  Optimal convergence properties of the FETI domain decomposition method , 1994 .

[7]  Ulrich Rüde,et al.  Algebraic multigrid for general inconsistent linear systems: The correction step , 2006 .

[8]  Ondrej Jakl,et al.  GEM - A Platform for Advanced Mathematical Geosimulations , 2009, PPAM.

[9]  Radim Blaheta,et al.  Displacement decomposition - incomplete factorization preconditioning techniques for linear elasticity problems , 1994, Numer. Linear Algebra Appl..

[10]  Pavel B. Bochev,et al.  On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..

[11]  E. F. Kaasschieter,et al.  Preconditioned conjugate gradients for solving singular systems , 1988 .

[12]  Jonathan J. Hu,et al.  ML 3.1 smoothed aggregation user's guide. , 2004 .

[13]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[14]  Tomás Kozubek,et al.  On the Moore–Penrose inverse in solving saddle‐point systems with singular diagonal blocks , 2012, Numer. Linear Algebra Appl..

[15]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[16]  Ulrich Rüde,et al.  Towards an algebraic multigrid method for tomographic image reconstruction -- improving convergence of ART , 2006 .

[17]  Ondrej Jakl,et al.  Parallel Solvers for Numerical Upscaling , 2012, PARA.

[18]  Roman Kohut,et al.  Digital image based numerical micromechanics of geocomposites with application to chemical grouting , 2015 .

[19]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[20]  Daniel B. Szyld,et al.  Algebraic Schwarz methods for the numerical solution of Markov chains , 2004 .

[21]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[22]  I. Marek,et al.  On the solution of singular linear systems of algebraic equations by semiiterative methods , 1988 .