Confocal spectroscopy of InGaN LED structures
暂无分享,去创建一个
Michael S. Shur | Gintautas Tamulaitis | Max Shatalov | Remigijus Gaska | Edmundas Kuokstis | Jūras Mickevičius | M. Shur | R. Gaska | M. Shatalov | J. Yang | J. W. Yang | D. Dobrovolskas | E. Kuokštis | J. Mickevičius | D. Dobrovolskas | G. Tamulaitis
[1] Jerry R. Meyer,et al. Band parameters for nitrogen-containing semiconductors , 2003 .
[2] A. Carlo,et al. EFFECTS OF MACROSCOPIC POLARIZATION IN III-V NITRIDE MULTIPLE QUANTUM WELLS , 1999, cond-mat/9905186.
[3] Takashi Mukai,et al. Spatial and temporal luminescence dynamics in an InxGa1−xN single quantum well probed by near-field optical microscopy , 2002 .
[4] Kazumi Wada,et al. Spatially resolved cathodoluminescence spectra of InGaN quantum wells , 1997 .
[5] Te-Chung Wang,et al. Optical study of a-plane InGaN/GaN multiple quantum wells with different well widths grown by metal-organic chemical vapor deposition , 2008 .
[6] A. Uedono,et al. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.
[7] F. Ponce,et al. Correlation of spectral luminescence with threading dislocations in green-light-emitting InGaN quantum wells , 2007 .
[8] M. Zervos,et al. Internal field effects on the lasing characteristics of InGaN/GaN quantum well lasers , 2008 .
[9] Fernando Ponce,et al. Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence , 2001 .
[10] F. Ponce,et al. Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning catholuminescence , 2001 .
[11] C. Humphreys,et al. Optical and microstructural studies of InGaN∕GaN single-quantum-well structures , 2005 .
[12] B. Deveaud,et al. High spatial resolution picosecond cathodoluminescence of InGaN quantum wells , 2006 .
[13] Alex Zunger,et al. Resonant hole localization and anomalous optical bowing in InGaN alloys , 1999 .
[14] P. Hinze,et al. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. , 2005, Physical review letters.
[15] Yoichi Kawakami,et al. Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra , 2008 .
[16] E. Yoon,et al. Optical and microstructural studies of atomically flat ultrathin In-rich InGaN/GaN multiple quantum wells , 2008 .
[17] C. Sone,et al. Micro-photoluminescence study of InxGa1-xN/GaN quantum wells , 2000 .
[18] Atsuhiro Kinoshita,et al. Determination of photoluminescence mechanism in InGaN quantum wells , 1999 .
[19] M. Tobin,et al. Spectroscopic Imaging of InGaN Epilayers , 1999 .
[20] Xing Li,et al. GaN-Based Light-Emitting Diodes: Efficiency at High Injection Levels , 2010, Proceedings of the IEEE.
[21] M. Shur,et al. Correlation between yellow luminescence intensity and carrier lifetimes in GaN epilayers , 2005 .
[22] J. Narayan,et al. Effect of thickness variation in high-efficiency InGaN/GaN light-emitting diodes , 2002 .
[23] H. Gotoh,et al. Detecting spatially localized excitons in InGaN quantum well structures with a micro-photoluminescence technique , 2006 .
[24] Takashi Mukai,et al. Confocal microphotoluminescence of InGaN-based light-emitting diodes , 2005 .