Structural Basis of the Mispairing of an Artificially Expanded Genetic Information System

[1]  F. Romesberg,et al.  The expanded genetic alphabet. , 2015, Angewandte Chemie.

[2]  I. Hirao,et al.  Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry , 2015, Nucleic acids research.

[3]  Kevin M. Bradley,et al.  Evolution of functional six-nucleotide DNA. , 2015, Journal of the American Chemical Society.

[4]  Steven A. Benner,et al.  Structural basis for a six nucleotide genetic alphabet. , 2015, Journal of the American Chemical Society.

[5]  Steven A Benner,et al.  Transcription, reverse transcription, and analysis of RNA containing artificial genetic components. , 2015, ACS synthetic biology.

[6]  Martin Egli,et al.  Differential Stabilities and Sequence-Dependent Base Pair Opening Dynamics of Watson–Crick Base Pairs with 5-Hydroxymethylcytosine, 5-Formylcytosine, or 5-Carboxylcytosine , 2015, Biochemistry.

[7]  Michal Hocek,et al.  Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet , 2014, Nucleic acids research.

[8]  Thomas Lavergne,et al.  A Semi-Synthetic Organism with an Expanded Genetic Alphabet , 2014, Nature.

[9]  T. Lavergne,et al.  Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. , 2014, Journal of the American Chemical Society.

[10]  Weihong Tan,et al.  In vitro selection with artificial expanded genetic information systems , 2013, Proceedings of the National Academy of Sciences.

[11]  Olivier Blacque,et al.  Crystal structures of B-DNA dodecamer containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine , 2013, Nucleic acids research.

[12]  S. Yokoyama,et al.  Generation of high-affinity DNA aptamers using an expanded genetic alphabet , 2013, Nature Biotechnology.

[13]  P. Bevilacqua,et al.  A simple fluorescence method for pK(a) determination in RNA and DNA reveals highly shifted pK(a)'s. , 2013, Journal of the American Chemical Society.

[14]  Takumi Ishizuka,et al.  Site-specific functionalization of RNA molecules by an unnatural base pair transcription system via click chemistry. , 2012, Chemical communications.

[15]  I. Hirao,et al.  Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma , 2012, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[16]  T. Lavergne,et al.  Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet , 2012, Proceedings of the National Academy of Sciences.

[17]  R. Krishnamurthy Role of pKa of Nucleobases in the Origins of Chemical Evolution , 2012, Accounts of chemical research.

[18]  I. Eperon,et al.  The transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites , 2012, Nucleic acids research.

[19]  T. Kunkel,et al.  Solution structure of the Dickerson DNA dodecamer containing a single ribonucleotide. , 2012, Biochemistry.

[20]  S. Benner,et al.  Synthesis and properties of 5-cyano-substituted nucleoside analog with a donor-donor-acceptor hydrogen-bonding pattern. , 2012, The Journal of organic chemistry.

[21]  Ichiro Hirao,et al.  Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies. , 2012, Accounts of chemical research.

[22]  Shigeyuki Yokoyama,et al.  Highly specific unnatural base pair systems as a third base pair for PCR amplification , 2011, Nucleic acids research.

[23]  Young Jun Seo,et al.  Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs. , 2011, Journal of the American Chemical Society.

[24]  S. Schneider,et al.  Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair. , 2011, Nature chemistry.

[25]  Steven A Benner,et al.  Amplification, mutation, and sequencing of a six-letter synthetic genetic system. , 2011, Journal of the American Chemical Society.

[26]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[27]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  Fei Chen,et al.  Expanded genetic alphabets in the polymerase chain reaction. , 2010, Angewandte Chemie.

[29]  Jaroslav Kypr,et al.  Circular dichroism and conformational polymorphism of DNA , 2009, Nucleic acids research.

[30]  Shigeyuki Yokoyama,et al.  An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules , 2008, Nucleic acids research.

[31]  Weihong Tan,et al.  Design of a novel molecular beacon: modification of the stem with artificially genetic alphabet. , 2008, Chemical communications.

[32]  Xiang-Jun Lu,et al.  3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures , 2008, Nature Protocols.

[33]  S. Yokoyama,et al.  An efficient unnatural base pair for PCR amplification. , 2007, Journal of the American Chemical Society.

[34]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[35]  Steven A. Benner,et al.  Enzymatic incorporation of a third nucleobase pair , 2007, Nucleic acids research.

[36]  E. Kool,et al.  The Difluorotoluene Debate — A Decade Later , 2007 .

[37]  Steven A. Benner,et al.  Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern , 2006, Nucleic acids research.

[38]  T. Kunkel DNA Replication Fidelity* , 2004, Journal of Biological Chemistry.

[39]  Steven A Benner,et al.  Nucleobase pairing in expanded Watson-Crick-like genetic information systems. , 2003, Structure.

[40]  J. A. Subirana,et al.  Structure of d(CGCGAATTCGCG) in the Presence of Ca2+Ions* , 1999, The Journal of Biological Chemistry.

[41]  K. Guckian,et al.  Solution structure of a DNA duplex containing a replicable difluorotoluene–adenine pair , 1998, Nature Structural Biology.

[42]  E. Kool,et al.  A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Hunter,et al.  The structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution. , 1993, The Journal of biological chemistry.

[44]  D. Patel,et al.  Premelting and melting transitions in the d(CGCGAATTCGCG) self-complementary duplex in solution. , 1982, Biochemistry.

[45]  H R Drew,et al.  Structure of a B-DNA dodecamer: conformation and dynamics. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Richard E. Dickerson,et al.  Crystal structure analysis of a complete turn of B-DNA , 1980, Nature.

[47]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[48]  S. Benner,et al.  Synthetic biology , 2018, Springer Singapore.

[49]  Andrew G. W. Leslie,et al.  Processing diffraction data with mosflm , 2007 .

[50]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[51]  F. Crick,et al.  Genetical Implications of the Structure of Deoxyribonucleic Acid , 1953, Nature.