Approximation of zeros of bounded maximal monotone mappings, solutions of Hammerstein integral equations and convex minimization problems

Let E be a real normed space with dual space E∗$E^{*}$ and let A:E→2E∗$A:E\rightarrow2^{E^{*}}$ be any map. Let J:E→2E∗$J:E\rightarrow2^{E^{*}}$ be the normalized duality map on E. A new class of mappings, J-pseudocontractive maps, is introduced and the notion of J-fixed points is used to prove that T:=(J−A)$T:=(J-A)$ is J-pseudocontractive if and only if A is monotone. In the case that E is a uniformly convex and uniformly smooth real Banach space with dual E∗$E^{*}$, T:E→2E∗$T: E\rightarrow2^{E^{*}}$ is a bounded J-pseudocontractive map with a nonempty J-fixed point set, and J−T:E→2E∗$J-T :E\rightarrow2^{E^{*}}$ is maximal monotone, a sequence is constructed which converges strongly to a J-fixed point of T. As an immediate consequence of this result, an analog of a recent important result of Chidume for bounded m-accretive maps is obtained in the case that A:E→2E∗$A:E\rightarrow2^{E^{*}}$ is bounded maximal monotone, a result which complements the proximal point algorithm of Martinet and Rockafellar. Furthermore, this analog is applied to approximate solutions of Hammerstein integral equations and is also applied to convex optimization problems. Finally, the techniques of the proofs are of independent interest.

[1]  Ravi P. Agarwal,et al.  Fixed Point Theory and Applications: Index , 2001 .

[2]  Kazuo Kido Strong convergence of resolvents of monotone operators in banach spaces , 1988 .

[3]  A. R. Tufa,et al.  Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type , 2015 .

[4]  C. Chidume,et al.  Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type , 2012 .

[5]  Y. Alber,et al.  On the projection methods for fixed point problems , 2001 .

[6]  Charles E. Chidume,et al.  An iterative algorithm for approximating solutions of Hammerstein equations with monotone maps in Banach spaces , 2017, Appl. Math. Comput..

[7]  Tosio Kato,et al.  Nonlinear semigroups and evolution equations , 1967 .

[8]  C. E. Chidume An approximation method for monotone Lipschitzian operators in Hilbert spaces , 1986 .

[9]  Felix E. Browder,et al.  Nonlinear mappings of nonexpansive and accretive type in Banach spaces , 1967 .

[10]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[11]  Y. Shehu,et al.  Strong convergence theorem for approximation of solutions of equations of Hammerstein type , 2012 .

[12]  Yekini Shehu,et al.  Approximation of solutions of generalized equations of Hammerstein type , 2012, Comput. Math. Appl..

[13]  Y. Alber Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications , 1993, funct-an/9311001.

[14]  F. Browder Existence and perturbation theorems for nonlinear maximal monotone operators in Banach spaces , 1967 .

[15]  I. I. Eremin,et al.  Operators and Iterative Processes of Fejér Type: Theory and Applications , 2009 .

[16]  D. Pascali,et al.  Nonlinear mappings of monotone type , 1979 .

[17]  R. Rockafellar Characterization of the subdifferentials of convex functions , 1966 .

[18]  Y. Censor,et al.  Iterations of paracontractions and firmaly nonexpansive operators with applications to feasibility and optimization , 1996 .

[19]  C. Chidume,et al.  Constructive techniques for zeros of monotone mappings in certain Banach spaces , 2015, SpringerPlus.

[20]  Wataru Takahashi,et al.  Strong Convergence of a Proximal-Type Algorithm in a Banach Space , 2002, SIAM J. Optim..

[21]  C. E. Chidume,et al.  Geometric Properties of Banach Spaces and Nonlinear Iterations , 2009 .

[22]  Vitaly Volpert,et al.  Elliptic Partial Differential Equations: Volume 2: Reaction-Diffusion Equations , 2014 .

[23]  Charles E. Chidume,et al.  An iterative method for solving nonlinear integral equations of Hammerstein type , 2013, Appl. Math. Comput..

[24]  Hadi Khatibzadeh,et al.  On the first- and second-order strongly monotone dynamical systems and minimization problems , 2015, Optim. Methods Softw..

[25]  Heinz H. Bauschke,et al.  Projection and proximal point methods: convergence results and counterexamples , 2004 .

[26]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[27]  C. Chidume The iterative solution of the equation f ∈ x + Tx for a monotone operator T in Lp spaces , 1986 .

[28]  A. Moudafi,et al.  Finding a Zero of The Sum of Two Maximal Monotone Operators , 1997 .

[29]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[30]  W. Takahashi PROXIMAL POINT ALGORITHMS AND FOUR RESOLVENTS OF NONLINEAR OPERATORS OF MONOTONE TYPE IN BANACH SPACES , 2008 .

[31]  S. Reich The range of sums of accretive and monotone operators , 1979 .

[32]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[33]  S. Reich Strong convergence theorems for resolvents of accretive operators in Banach spaces , 1980 .

[34]  Felix E. Browder,et al.  Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces , 1967 .

[35]  R. Rockafellar,et al.  On the maximal monotonicity of subdifferential mappings. , 1970 .

[36]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[37]  Ronald E. Bruck A strongly convergent iterative solution of 0 ϵ U(x) for a maximal monotone operator U in Hilbert space , 1974 .

[38]  Simeon Reich,et al.  CONSTRUCTIVE TECHNIQUES FOR ACCRETIVE AND MONOTONE OPERATORS , 1979 .

[39]  Abdellatif Moudafi,et al.  Proximal methods for a class of bilevel monotone equilibrium problems , 2010, J. Glob. Optim..

[40]  Y. Alber,et al.  Nonlinear Ill-posed Problems of Monotone Type , 2006 .

[41]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[42]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[43]  M. Sene,et al.  Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type with Lipschitz and Bounded Nonlinear Operators , 2012 .

[44]  C. Chidume,et al.  Strong Convergence Theorems for Zeros of Bounded Maximal Monotone Nonlinear Operators , 2012 .

[45]  H. Zegeye,et al.  Approximation of Solutions of Nonlinear Equations of Monotone and Hammerstein Type , 2003 .

[46]  Fixed Point of Strong Duality Pseudocontractive Mappings and Applications , 2012 .

[47]  F. Browder,et al.  Nonlinear integral equations and systems of Hammerstein type , 1975 .

[48]  Y. Shehu,et al.  APPROXIMATION OF SOLUTIONS OF EQUATIONS OF HAMMERSTEIN TYPE IN HILBERT SPACES , 2015 .

[49]  W. A. Kirk,et al.  Fixed Point Theory in Distance Spaces , 2014 .

[50]  Michael G. Crandall,et al.  Nonlinear evolution equations in Banach spaces , 1972 .

[51]  Hong-Kun Xu,et al.  A Regularization Method for the Proximal Point Algorithm , 2006, J. Glob. Optim..

[52]  Habtu Zegeye,et al.  Local solvability of a constrainedgradient system of total variation , 2003 .

[53]  Joram Lindenstrauss Classical Banach Spaces II: Function Spaces , 1979 .

[54]  C. O. Chidume,et al.  An algorithm for computing zeros of generalized phi-strongly monotone and bounded maps in classical Banach spaces , 2016 .

[55]  C. Chidume,et al.  Approximation of solutions of Hammerstein equations with bounded strongly accretive nonlinear operators , 2009 .

[56]  C. Chidume,et al.  Solution of nonlinear integral equations of Hammerstein type , 2011 .

[57]  A. Moudafi,et al.  Combining The Proximal Algorithm And Tikhonov Regularization , 1996 .

[58]  H. Zegeye Strong convergence theorems for maximal monotone mappings in Banach spaces , 2008 .

[59]  Hong-Kun Xu Inequalities in Banach spaces with applications , 1991 .

[60]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[61]  M. Sene,et al.  An Iterative Algorithm for Approximating Solutions of Hammerstein Integral Equations , 2013 .

[62]  Yekini Shehu,et al.  Iterative approximation of solutions of equations of Hammerstein type in certain Banach spaces , 2013, Appl. Math. Comput..

[63]  KI,et al.  Strong Convergence Theorems for Accretive Operators in Banach Spaces* , 2003 .

[64]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[65]  Strong and Weak Solutions to Second Order Differential Inclusions Governed by Monotone Operators , 2014 .

[66]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[67]  C. Chidume,et al.  Iterative approximation of solutions of nonlinear equations of Hammerstein type , 2009 .

[68]  S. Reich,et al.  Two Strong Convergence Theorems for a Proximal Method in Reflexive Banach Spaces , 2010 .

[69]  V. Berinde Iterative Approximation of Fixed Points , 2007 .