On weight enumerators and MacWilliams identity for convolutional codes
暂无分享,去创建一个
[1] G. David Forney. MacWilliams identities for codes on graphs , 2009, 2009 IEEE Information Theory Workshop.
[2] A. Geyer,et al. On equivalent convolutional encoders and decoding complexity , 2002, Proceedings IEEE International Symposium on Information Theory,.
[3] Bartolomeu F. Uchôa Filho,et al. Minimal Trellis Modules and Equivalent Convolutional Codes , 2006, IEEE Transactions on Information Theory.
[4] Rolf Johannesson,et al. Fundamentals of Convolutional Coding , 1999 .
[5] J. B. Shearer,et al. There is no MacWilliams identity for convolutional codes (Corresp.) , 1977, IEEE Trans. Inf. Theory.
[6] G. David Forney. MacWilliams identities for terminated convolutional codes , 2010, 2010 IEEE International Symposium on Information Theory.
[7] Heide Gluesing-Luerssen,et al. A MacWilliams Identity for Convolutional Codes: The General Case , 2009, IEEE Transactions on Information Theory.
[8] Khaled A. S. Abdel-Ghaffar. On unit constraint-length convolutional codes , 1992, IEEE Trans. Inf. Theory.
[9] H. Gluesing-Luerssen,et al. On the MacWilliams Identity for Convolutional Codes , 2006, IEEE Transactions on Information Theory.
[10] G. David Forney. Codes on graphs: MacWilliams identities , 2009, ArXiv.
[11] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[12] K. X. M. Tzeng,et al. Convolutional Codes and 'Their Performance in Communication Systems , 1971 .