Backbone phylogeny and adaptive evolution of Pleurospermum s. l.: New insights from phylogenomic analyses of complete plastome data

Pleurospermum is a taxonomically challenging taxon of Apiaceae, as its circumscription and composition remain controversial for morphological similarities with several related genera, leading to a dispute between Pleurospermum in the broad sense and strict sense. While evidence from previous molecular studies recognized plural branching lineages within the Pleurospermum s. l., it did not support the latest delimitation of Pleurospermum s. str. by only two closely related northern species. So far, no proper delimitation for Pleurospermum has come up, and many of the plural taxa in Pleurospermum s. l. remain unresolved, which may be due to poor phylogenetic resolution yielded barely from ITS sequences. Herein, we newly assembled 40 complete plastomes from 36 species of Pleurospermum s. l. and related genera, 34 of which were first reported and generated a well-resolved backbone phylogeny in a framework of the subfamily Apioideae. From the phylogeny with greatly improved resolution, a total of six well-supported monophyletic lineages within Pleurospermum s. l. were recognized falling in different major clades of Apioideae. Combining morphological characteristics with phylogenetic inference, we suggested to re-delimit the Pleurospermum s. str. by introducing nine species mainly from the Himalayan regions and proposed its boundary features; the remaining species were suggested to be excluded from Pleurospermum to incorporate into their more related taxa being revealed. On this basis, the plastome comparison revealed not only the high conservatism but also the mild differences among lineages in plastome structure and gene evolution. Overall, our study provided a backbone phylogeny essential for further studies of the taxonomically difficult taxa within Pleurospermum s. l.

[1]  Xingjin He,et al.  Molecular evolution and phylogenetic relationships of Ligusticum (Apiaceae) inferred from the whole plastome sequences , 2022, BMC ecology and evolution.

[2]  Xingjin He,et al.  The complete plastomes of seven Peucedanum plants: comparative and phylogenetic analyses for the Peucedanum genus , 2022, BMC plant biology.

[3]  Xiaoli Liu,et al.  Molecular phylogenetics of Pterocyclus (Apiaceae) based on nrDNA ITS sequences: revised circumscription with a restored species , 2021 .

[4]  Xingjin He,et al.  Backbone phylogeny and evolution of Apioideae (Apiaceae): New insights from phylogenomic analyses of plastome data. , 2021, Molecular phylogenetics and evolution.

[5]  Xingjin He,et al.  New insights into the phylogeny and taxonomy of Chinese Physospermopsis (Apiaceae) , 2021, PhytoKeys.

[6]  Xingjin He,et al.  Phylogeny and taxonomy of Meeboldia, Sinodielsia and their relatives (Apiaceae: Apioideae) inferred from nrDNA ITS, plastid DNA intron (rpl16 and rps16) sequences and morphological characters , 2021 .

[7]  Eric P. Nawrocki,et al.  Rfam 14: expanded coverage of metagenomic, viral and microRNA families , 2020, Nucleic Acids Res..

[8]  Xingjin He,et al.  Plastomes of eight Ligusticum species: characterization, genome evolution, and phylogenetic relationships , 2020, BMC plant biology.

[9]  Jing Zhou,et al.  An expanded circumscription for the previously monotypic Pleurospermopsis (Apiaceae) based on nrDNA ITS sequences and morphological evidence , 2020 .

[10]  Xingjin He,et al.  New insights into the phylogenetic position of Hymenidium dentatum (Apioideae, Apiaceae) inferred from nrDNA and morphological evidence , 2020 .

[11]  Jing Zhou,et al.  The complete chloroplast genome and phylogenetic analysis of Pleurospermum amabile Craib & W. W. Smith , 2020 .

[12]  Margaret H. Frank,et al.  TBtools - an integrative toolkit developed for interactive analyses of big biological data. , 2020, Molecular plant.

[13]  J. Wen,et al.  A transcriptome-based study on the phylogeny and evolution for taxonomic controversial subfamily Apioideae (Apiaceae). , 2020, Annals of botany.

[14]  S. Downie,et al.  Molecular Phylogenetics of Ligusticum (Apiaceae) Based on nrDNA ITS Sequences: Rampant Polyphyly, Placement of the Chinese Endemic Species, and a Much-Reduced Circumscription of the Genus , 2020, International Journal of Plant Sciences.

[15]  C. dePamphilis,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2019, bioRxiv.

[16]  Yixiang Wang,et al.  Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales , 2019, BMC Plant Biology.

[17]  De‐Zhu Li,et al.  PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes , 2019, Plant Methods.

[18]  R. Bock,et al.  OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes , 2019, bioRxiv.

[19]  Jin Zhang,et al.  PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies , 2018, bioRxiv.

[20]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[21]  Alex Bateman,et al.  Non‐Coding RNA Analysis Using the Rfam Database , 2018, Current protocols in bioinformatics.

[22]  Juan Zhu,et al.  Plastid Genome Comparative and Phylogenetic Analyses of the Key Genera in Fagaceae: Highlighting the Effect of Codon Composition Bias in Phylogenetic Inference , 2018, Front. Plant Sci..

[23]  Juan C. Sánchez-DelBarrio,et al.  DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. , 2017, Molecular biology and evolution.

[24]  Xuewen Wang,et al.  Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana , 2017, Botanical Studies.

[25]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[26]  Tracey A Ruhlman,et al.  Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. , 2017, The New phytologist.

[27]  C. Ezcurra,et al.  Chloroplast and ITS phylogenies to understand the evolutionary history of southern South American Azorella, Laretia and Mulinum (Azorelloideae, Apiaceae). , 2017, Molecular phylogenetics and evolution.

[28]  D. Spooner,et al.  Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid. , 2017, American journal of botany.

[29]  G. Xiao,et al.  Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis , 2016, BMC Plant Biology.

[30]  Patrick Mardulyn,et al.  NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.

[31]  Yundong Gao,et al.  Intraspecific differentiation of Pleurospermum hookeri (Apiaceae), and its interspecific relationships with two close relatives in the genus Pleurospermum , 2015 .

[32]  De-Zhu Li,et al.  Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus , 2015, Scientific Reports.

[33]  J. Wen,et al.  Chloroplast capture and intra- and inter-continental biogeographic diversification in the Asian - New World disjunct plant genus Osmorhiza (Apiaceae). , 2015, Molecular phylogenetics and evolution.

[34]  Ben Murrell,et al.  Gene-wide identification of episodic selection. , 2015, Molecular biology and evolution.

[35]  Sergei L. Kosakovsky Pond,et al.  UC Office of the President Recent Work Title Less Is More : An Adaptive Branch-Site Random Effects Model for Efficient Detection of Episodic Diversifying Selection Permalink , 2015 .

[36]  S. Downie,et al.  A Comparative Analysis of Whole Plastid Genomes from the Apiales: Expansion and Contraction of the Inverted Repeat, Mitochondrial to Plastid Transfer of DNA, and Identification of Highly Divergent Noncoding Regions , 2015 .

[37]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[38]  A. Cauwet-Marc,et al.  Apiaceae himalayenses I , 2014 .

[39]  D. Smith Mitochondrion-to-plastid DNA transfer: it happens. , 2014, The New phytologist.

[40]  Pablo Vera,et al.  Mediated Plastid RNA Editing in Plant Immunity , 2013, PLoS pathogens.

[41]  M. Hsieh,et al.  Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues , 2013, Plant Molecular Biology.

[42]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[43]  D. Spooner,et al.  Against the traffic , 2012, Mobile genetic elements.

[44]  Sergei L. Kosakovsky Pond,et al.  Detecting Individual Sites Subject to Episodic Diversifying Selection , 2012, PLoS genetics.

[45]  M. Pimenov,et al.  Broad Polyphyly in Pleurospermum s. l. (Umbelliferae-Apioideae) as Inferred from nrDNA ITS and Chloroplast Sequences , 2012 .

[46]  Dariusz Grzebelus,et al.  De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome , 2012, BMC Plant Biology.

[47]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[48]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[49]  Kai F. Müller,et al.  The evolution of the plastid chromosome in land plants: gene content, gene order, gene function , 2011, Plant Molecular Biology.

[50]  R. Jansen,et al.  Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae) , 2011, Plant Molecular Biology.

[51]  Hui Zhang,et al.  Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. , 2011, Molecular biology and evolution.

[52]  Bartolomé Sabater,et al.  Plastid ndh genes in plant evolution. , 2010, Plant physiology and biochemistry : PPB.

[53]  S. Downie,et al.  Major clades within Apiaceae subfamily Apioideae as inferred by phylogenetic analysis of nrDNA ITS sequences , 2010 .

[54]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[55]  S. Downie,et al.  Towards a more robust molecular phylogeny of Chinese Apiaceae subfamily Apioideae: additional evidence from nrDNA ITS and cpDNA intron (rpl16 and rps16) sequences. , 2009, Molecular phylogenetics and evolution.

[56]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[57]  Jeffrey P. Mower The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments , 2009, Nucleic Acids Res..

[58]  S. Downie,et al.  A molecular phylogeny of Chinese Apiaceae subfamily Apioideae inferred from nuclear ribosomal DNA internal transcribed spacer sequences , 2008 .

[59]  S. Downie,et al.  The evolutionary history of Eryngium (Apiaceae, Saniculoideae): rapid radiations, long distance dispersals, and hybridizations. , 2008, Molecular phylogenetics and evolution.

[60]  Uwe G Maier,et al.  Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii , 2007, BMC Plant Biology.

[61]  R. Waterston,et al.  Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species , 2006, Genome Biology.

[62]  Lior Pachter,et al.  VISTA: computational tools for comparative genomics , 2004, Nucleic Acids Res..

[63]  R. Bock,et al.  The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. , 2000, The Plant journal : for cell and molecular biology.

[64]  P. Nixon,et al.  Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes , 1998, The EMBO journal.

[65]  Umbelliferae , 1995, Plants of the Rio Grande Delta.

[66]  G. Igloi,et al.  Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. , 1995, Journal of molecular biology.

[67]  G. Michail Updated checklist of Chinese Umbelliferae: nomenclature, synonymy, typification, Distribution , 2017 .

[68]  Wang Huipen Fruit Anatomical Features of Sixteen Species and One Variety of Pleurospermum(Apiaceae)in China and Their Taxonomic Significance , 2014 .

[69]  M. Pimenov,et al.  Taxonomic revision of Pleurospermum Hoffm. and related genera of Umbelliferae II. The genera Pleurospermum, Pterocyclus, Trachydium, Keraymonia, Pseudotrachydium, Aulacospermum, and Hymenolaena , 2000 .

[70]  M. Pimenov,et al.  Taxonomic revision of Pleurospermum Hoffm. and related genera of Umbelliferae III. The genera Physospermopsis and Hymenidium , 2000 .

[71]  M. Pimenov,et al.  Taxonomic revision of Pleurospermum Hoffm. and related genera of Umbelliferae I. General part , 2000 .

[72]  M. Pimenov,et al.  New nomenclatural combinations for Chinese Umbelliferae , 1999 .

[73]  M. A. Farille,et al.  Apiaceae himalayenses. III , 1985 .

[74]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .