Barriers in the brain: resolving dendritic spine morphology and compartmentalization

Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50–400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development – both experimental and theoretical – that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation.

[1]  J. Bourne,et al.  Nanoscale analysis of structural synaptic plasticity , 2012, Current Opinion in Neurobiology.

[2]  O. Steward,et al.  Synaptic Clustering of AMPA Receptors by the Extracellular Immediate-Early Gene Product Narp , 1999, Neuron.

[3]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Craig,et al.  Postsynaptic Scaffolds of Excitatory and Inhibitory Synapses in Hippocampal Neurons: Maintenance of Core Components Independent of Actin Filaments and Microtubules , 2000, The Journal of Neuroscience.

[5]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[6]  Yasunori Hayashi,et al.  Structural plasticity of dendritic spines , 2012, Current Opinion in Neurobiology.

[7]  B. Sabatini,et al.  Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines , 2007, Neuron.

[8]  M. S. Turner,et al.  Diffusion on membrane tubes: a highly discriminatory test of the Saffman-Delbruck theory. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[10]  R. Huganir,et al.  Neuroscience: Strength in numbers , 2013, Nature.

[11]  R. Malinow,et al.  Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. , 1994, Science.

[12]  B. Sabatini,et al.  M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels , 2010, Neuron.

[13]  M. Ehlers,et al.  Diffusional Trapping of GluR1 AMPA Receptors by Input-Specific Synaptic Activity , 2007, Neuron.

[14]  Rafael Yuste,et al.  Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies , 2007, Front. Neurosci..

[15]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[16]  U Valentin Nägerl,et al.  Two-photon excitation STED microscopy in two colors in acute brain slices. , 2013, Biophysical journal.

[17]  Ger J. A. Ramakers,et al.  Rho proteins, mental retardation and the cellular basis of cognition , 2002, Trends in Neurosciences.

[18]  Yasunori Hayashi,et al.  The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure , 2007, Proceedings of the National Academy of Sciences.

[19]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[20]  C. Hoogenraad,et al.  Actin in dendritic spines: connecting dynamics to function , 2010, The Journal of cell biology.

[21]  John Lisman,et al.  Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation , 2004, The Journal of Neuroscience.

[22]  E. Gouaux,et al.  Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. , 2010, Biophysical journal.

[23]  Hillel Adesnik,et al.  Photoinactivation of Native AMPA Receptors Reveals Their Real-Time Trafficking , 2005, Neuron.

[24]  Knut Holthoff,et al.  Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons , 2010, The Journal of physiology.

[25]  Roberto Araya,et al.  Sodium channels amplify spine potentials , 2007, Proceedings of the National Academy of Sciences.

[26]  Flavie Lavoie-Cardinal,et al.  Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[28]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[29]  M. Passafaro,et al.  Extracellular Interactions between GluR2 and N-Cadherin in Spine Regulation , 2007, Neuron.

[30]  J. Simon Wiegert,et al.  AMPA receptors gate spine Ca2+ transients and spike-timing-dependent potentiation , 2010, Proceedings of the National Academy of Sciences.

[31]  Prabuddha Sengupta,et al.  Photocontrollable fluorescent proteins for superresolution imaging. , 2014, Annual review of biophysics.

[32]  A. Triller,et al.  Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! , 2005, Trends in Neurosciences.

[33]  Jens Harting,et al.  Forced transport of deformable containers through narrow constrictions. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[35]  Liqun Luo,et al.  Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. , 2002, Annual review of cell and developmental biology.

[36]  Bo Huang,et al.  Super-resolution optical microscopy: multiple choices. , 2010, Current opinion in chemical biology.

[37]  V. Piëch,et al.  Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons , 2001, Nature Neuroscience.

[38]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[39]  David Holcman,et al.  Diffusion laws in dendritic spines , 2011, Journal of mathematical neuroscience.

[40]  Bernardo L Sabatini,et al.  Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. , 2013, Biophysical journal.

[41]  Mary B. Kennedy,et al.  Integration of biochemical signalling in spines , 2005, Nature Reviews Neuroscience.

[42]  Karel Svoboda,et al.  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.

[43]  C. Storm,et al.  Confinement without boundaries: anisotropic diffusion on the surface of a cylinder. , 2014, Soft matter.

[44]  Idan Segev,et al.  Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations , 1998, Trends in Neurosciences.

[45]  R. Yasuda,et al.  AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK–dependent manner during long-term potentiation , 2010, Proceedings of the National Academy of Sciences.

[46]  Z. Nusser AMPA amd NMDA receptors: similarities and differences in their synaptic distribution , 2000, Current Opinion in Neurobiology.

[47]  J. Henley,et al.  Lateral Diffusion Drives Constitutive Exchange of AMPA Receptors at Dendritic Spines and Is Regulated by Spine Morphology , 2006, The Journal of Neuroscience.

[48]  M. Frerking,et al.  Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation , 2008, Proceedings of the National Academy of Sciences.

[49]  M. Sheng,et al.  Dentritic spines : structure, dynamics and regulation , 2001, Nature Reviews Neuroscience.

[50]  Roberto Araya,et al.  The spine neck filters membrane potentials , 2006, Proceedings of the National Academy of Sciences.

[51]  Nelson Spruston,et al.  Synaptic amplification by dendritic spines enhances input cooperativity , 2012, Nature.

[52]  R. Nicoll,et al.  LTP requires a reserve pool of glutamate receptors independent of subunit type , 2012, Nature.

[53]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[54]  Rafael Yuste,et al.  Calcium Dynamics of Spines Depend on Their Dendritic Location , 2002, Neuron.

[55]  堀池 由浩 Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines , 2009 .

[56]  Rafael Yuste,et al.  Activity-dependent dendritic spine neck changes are correlated with synaptic strength , 2014, Proceedings of the National Academy of Sciences.

[57]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[58]  Haruo Kasai,et al.  Protein Synthesis and Neurotrophin-Dependent Structural Plasticity of Single Dendritic Spines , 2008, Science.

[59]  Travis J Gould,et al.  Actin mediates the nanoscale membrane organization of the clustered membrane protein influenza hemagglutinin. , 2013, Biophysical journal.

[60]  Gael Moneron,et al.  Two-photon excitation STED microscopy. , 2009, Optics express.

[61]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  D. Choquet,et al.  Regulation of AMPA receptor lateral movements , 2002, Nature.

[63]  K. Harris,et al.  Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  G. Collingridge,et al.  Receptor trafficking and synaptic plasticity , 2004, Nature Reviews Neuroscience.

[65]  Daniel Choquet,et al.  Control of the Postsynaptic Membrane Viscosity , 2009, The Journal of Neuroscience.

[66]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[67]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[68]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[69]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[70]  B. Sabatini,et al.  SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines , 2005, Nature Neuroscience.

[71]  Yi Zuo,et al.  Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization , 2008, The Journal of Neuroscience.

[72]  David Holcman,et al.  Dynamic regulation of spine–dendrite coupling in cultured hippocampal neurons , 2004, The European journal of neuroscience.

[73]  Dominique Muller,et al.  Increased Phosphorylation of Ca/Calmodulin-dependent Protein Kinase II and Its Endogenous Substrates in the Induction of Long Term Potentiation (*) , 1995, The Journal of Biological Chemistry.

[74]  S. Hell,et al.  Superresolving dendritic spines. , 2013, Biophysical journal.

[75]  Dejan Zecevic,et al.  Cortical dendritic spine heads are not electrically isolated by the spine neck from membrane potential signals in parent dendrites. , 2014, Cerebral cortex.

[76]  Ryohei Yasuda,et al.  Local, persistent activation of Rho GTPases during plasticity of single dendritic spines , 2011, Nature.

[77]  S. R. Cajal,et al.  Estructura de los centros nerviosos de las Aves , 1888 .

[78]  Daniel Choquet,et al.  Direct imaging of lateral movements of AMPA receptors inside synapses , 2003, The EMBO journal.

[79]  Bernardo L. Sabatini,et al.  Biphasic Synaptic Ca Influx Arising from Compartmentalized Electrical Signals in Dendritic Spines , 2009, PLoS biology.

[80]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[81]  R. Yuste Dendritic Spines , 2010 .

[82]  M. Taoka,et al.  Identification of protein substrates of Ca(2+)/calmodulin-dependent protein kinase II in the postsynaptic density by protein sequencing and mass spectrometry. , 2002, Biochemical and biophysical research communications.

[83]  R. Yasuda,et al.  Plasticity of dendritic spines: subcompartmentalization of signaling. , 2014, Annual review of physiology.

[84]  D. Choquet,et al.  [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. , 2008, Medecine sciences : M/S.

[85]  Michael D. Ehlers,et al.  Myosin Vb Mobilizes Recycling Endosomes and AMPA Receptors for Postsynaptic Plasticity , 2008, Cell.

[86]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[87]  D. Muller,et al.  Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. , 1995, The Journal of biological chemistry.

[88]  J. C. Anderson,et al.  Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex , 1994, The Journal of comparative neurology.

[89]  D. Choquet,et al.  A three-step model for the synaptic recruitment of AMPA receptors , 2011, Molecular and Cellular Neuroscience.

[90]  M. Heine Surface Mobility of Postsynaptic AMPARs Tunes , 2008 .

[91]  M. Ehlers,et al.  Syntaxin-4 Defines a Domain for Activity-Dependent Exocytosis in Dendritic Spines , 2010, Cell.

[92]  T. Soderling,et al.  Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways , 2010, Current Opinion in Neurobiology.

[93]  J. Lisman,et al.  A Model of Synaptic Memory A CaMKII/PP1 Switch that Potentiates Transmission by Organizing an AMPA Receptor Anchoring Assembly , 2001, Neuron.

[94]  E. Benarroch,et al.  AMPA receptors , 2016, Neurology.

[95]  R. Nicoll,et al.  AMPA Receptor Trafficking at Excitatory Synapses , 2003, Neuron.

[96]  M. Kneussel,et al.  Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics , 2013, Nature Reviews Neuroscience.

[97]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[98]  Bernardo L. Sabatini,et al.  Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties , 2014, Front. Neuroanat..

[99]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[100]  H. Mclennan,et al.  Synaptic Transmission , 2003 .

[101]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[102]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[103]  Christophe Zimmer,et al.  Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe , 2011, PloS one.

[104]  C F Stevens,et al.  Quantitative fine-structural analysis of olfactory cortical synapses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Martin J Booth,et al.  Adaptive optics enables 3D STED microscopy in aberrating specimens. , 2012, Optics express.

[106]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[107]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[108]  T. Oertner,et al.  Depolarization gates spine calcium transients and spike-timing-dependent potentiation , 2012, Current Opinion in Neurobiology.

[109]  R. Nicoll,et al.  Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[110]  David A. Williams,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single – Quantum Dot Tracking , 2012 .

[111]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[112]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[113]  Daniel Choquet,et al.  Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95 , 2013, The Journal of Neuroscience.

[114]  M. S. Turner,et al.  Mobility in geometrically confined membranes , 2011, Proceedings of the National Academy of Sciences.

[115]  Kristen M. Harris,et al.  Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes , 2006, Neuron.

[116]  Elena B. Pasquale,et al.  Molecular mechanisms of dendritic spine development and remodeling , 2005, Progress in Neurobiology.

[117]  B. Gähwiler,et al.  AMPA‐receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus , 2004, The Journal of physiology.

[118]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[119]  Rafael Yuste,et al.  Electrical compartmentalization in dendritic spines. , 2013, Annual review of neuroscience.

[120]  Chenglong Xia,et al.  Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes , 2012, Proceedings of the National Academy of Sciences.

[121]  Bernardo L. Sabatini,et al.  Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy , 2009, Neuron.

[122]  Stefan W. Hell,et al.  Nanoscopy in a Living Mouse Brain , 2012, Science.

[123]  G. Collingridge,et al.  Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient Endocytosis of Extrasynaptic AMPARs , 2004, The Journal of Neuroscience.

[124]  G M Shepherd,et al.  The dendritic spine: a multifunctional integrative unit. , 1996, Journal of neurophysiology.

[125]  O. Thoumine,et al.  Biophysical mechanisms regulating AMPA receptor accumulation at synapses , 2013, Brain Research Bulletin.

[126]  Christian Eggeling,et al.  Diffraction-unlimited all-optical imaging and writing with a photochromic GFP , 2011, Nature.

[127]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[128]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[129]  U Valentin Nägerl,et al.  Two-color STED microscopy of living synapses using a single laser-beam pair. , 2011, Biophysical journal.

[130]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[131]  O. Thoumine,et al.  Unified quantitative model of AMPA receptor trafficking at synapses , 2012, Proceedings of the National Academy of Sciences.

[132]  Hari Shroff,et al.  Single-Molecule Discrimination of Discrete Perisynaptic and Distributed Sites of Actin Filament Assembly within Dendritic Spines , 2010, Neuron.

[133]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[134]  Nicholas A. Frost,et al.  Optimization of Cell Morphology Measurement via Single-Molecule Tracking PALM , 2012, PloS one.

[135]  Jun Noguchi,et al.  Structural dynamics of dendritic spines in memory and cognition , 2010, Trends in Neurosciences.

[136]  Christian Eggeling,et al.  Nanoscopy of Living Brain Slices with Low Light Levels , 2012, Neuron.

[137]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[138]  C. Hoogenraad,et al.  Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping. , 2013, Biophysical journal.

[139]  M. Kessels,et al.  Controlling actin cytoskeletal organization and dynamics during neuronal morphogenesis. , 2011, European journal of cell biology.

[140]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[141]  Yoshihisa Kubota,et al.  The impacts of geometry and binding on CaMKII diffusion and retention in dendritic spines , 2011, Journal of Computational Neuroscience.

[142]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[143]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[144]  Fidel Santamaría,et al.  Quantifying the Effects of Elastic Collisions and Non-Covalent Binding on Glutamate Receptor Trafficking in the Post-Synaptic Density , 2010, PLoS Comput. Biol..

[145]  Roberto Malinow,et al.  AMPA Receptor Incorporation into Synapses during LTP: The Role of Lateral Movement and Exocytosis , 2009, Neuron.

[146]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[147]  C. Storm,et al.  Impact of morphology on diffusive dynamics on curved surfaces. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[148]  Rafael Yuste,et al.  On the electrical function of dendritic spines , 2004, Trends in Neurosciences.

[149]  Yu Song,et al.  Nanoscale Scaffolding Domains within the Postsynaptic Density Concentrate Synaptic AMPA Receptors , 2013, Neuron.