Efficient data mining for local binary pattern in texture image analysis

Local binary pattern (LBP) is a simple gray scale descriptor to characterize the local distribution of the grey levels in an image. Multi-resolution LBP and/or combinations of the LBPs have shown to be effective in texture image analysis. However, it is unclear what resolutions or combinations to choose for texture analysis. Examining all the possible cases is impractical and intractable due to the exponential growth in a feature space. This limits the accuracy and time- and space-efficiency of LBP. Here, we propose a data mining approach for LBP, which efficiently explores a high-dimensional feature space and finds a relatively smaller number of discriminative features. The features can be any combinations of LBPs. These may not be achievable with conventional approaches. Hence, our approach not only fully utilizes the capability of LBP but also maintains the low computational complexity. We incorporated three different descriptors (LBP, local contrast measure, and local directional derivative measure) with three spatial resolutions and evaluated our approach using two comprehensive texture databases. The results demonstrated the effectiveness and robustness of our approach to different experimental designs and texture images.

[1]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[3]  Nong Sang,et al.  Multi-ring local binary patterns for rotation invariant texture classification , 2011, Neural Computing and Applications.

[4]  K. Etemad,et al.  Discriminant analysis for recognition of human face images , 1997 .

[5]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD 2000.

[6]  Matti Pietikäinen,et al.  Contextual Analysis of Textured Scene Images , 2006, BMVC.

[7]  Hong Yang,et al.  A LBP-based Face Recognition Method with Hamming Distance Constraint , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[8]  Wen Gao,et al.  Ensemble of Piecewise FDA Based on Spatial Histograms of Local (Gabor) Binary Patterns for Face Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[9]  Taha H. Rassem,et al.  Completed Local Ternary Pattern for Rotation Invariant Texture Classification , 2014, TheScientificWorldJournal.

[10]  Zhenhua Guo,et al.  Hierarchical multiscale LBP for face and palmprint recognition , 2010, 2010 IEEE International Conference on Image Processing.

[11]  Deli Zhao,et al.  Laplacian PCA and Its Applications , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[12]  Sanun Srisuk,et al.  Face Recognition with Local Line Binary Pattern , 2009, 2009 Fifth International Conference on Image and Graphics.

[13]  Baochang Zhang,et al.  Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor , 2010, IEEE Transactions on Image Processing.

[14]  Yang Zhao,et al.  Completed robust local binary pattern for texture classification , 2013, Neurocomputing.

[15]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[17]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Zhenhua Guo,et al.  Rotation invariant texture classification using adaptive LBP with directional statistical features , 2010, 2010 IEEE International Conference on Image Processing.

[19]  Chang-qing Zhu,et al.  Study of remote sensing image texture analysis and classification using wavelet , 1998 .

[20]  Caifeng Shan,et al.  Learning Discriminative LBP-Histogram Bins for Facial Expression Recognition , 2008, BMVC.

[21]  Dimitrios K. Iakovidis,et al.  Fuzzy Local Binary Patterns for Ultrasound Texture Characterization , 2008, ICIAR.

[22]  Qiuqi Ruan,et al.  Fully automatic 3D facial expression recognition using polytypic multi-block local binary patterns , 2015, Signal Process..

[23]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[24]  Yaniv Taigman,et al.  Descriptor Based Methods in the Wild , 2008 .

[25]  Jin Tae Kwak,et al.  A multiview boosting approach to tissue segmentation , 2014, Medical Imaging.

[26]  Stefan Rüger,et al.  Robust texture features for still-image retrieval , 2005 .

[27]  L. Nanni,et al.  Selecting the Best Performing Rotation Invariant Patterns in Local Binary/Ternary Patterns , 2010, IPCV.

[28]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[29]  M. Topi,et al.  Robust texture classification by subsets of local binary patterns , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[30]  Matti Pietikäinen,et al.  Local Binary Pattern Descriptors for Dynamic Texture Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[31]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[32]  Hanqing Lu,et al.  Face detection using improved LBP under Bayesian framework , 2004, Third International Conference on Image and Graphics (ICIG'04).

[33]  Yang Zhao,et al.  Completed Local Binary Count for Rotation Invariant Texture Classification , 2012, IEEE Transactions on Image Processing.

[34]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Matti Pietikäinen,et al.  RLBP: Robust Local Binary Pattern , 2013, BMVC.

[36]  Yunhui Yan,et al.  Neighborhood Estimated Local Binary Patterns for Texture Classification , 2014 .

[37]  Ehsanollah Kabir,et al.  Fabric Defect Detection Using Modified Local Binary Patterns , 2008, EURASIP J. Adv. Signal Process..

[38]  Bill Triggs,et al.  Feature Sets and Dimensionality Reduction for Visual Object Detection , 2010, BMVC.

[39]  F. Cendes,et al.  Texture analysis of medical images. , 2004, Clinical radiology.

[40]  Ashok Samal,et al.  Texture as the basis for individual tree identification , 2006, Inf. Sci..

[41]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[42]  C. L. Philip Chen,et al.  A Noise-Robust Adaptive Hybrid Pattern for Texture Classification , 2014, 2014 22nd International Conference on Pattern Recognition.

[43]  Wei Wei,et al.  Centralized Binary Patterns Embedded with Image Euclidean Distance for Facial Expression Recognition , 2008, 2008 Fourth International Conference on Natural Computation.

[44]  Matti Pietikäinen,et al.  Incorporating Texture Intensity Information into LBP-Based Operators , 2013, SCIA.

[45]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[46]  Cheng Wang,et al.  A novel extended local-binary-pattern operator for texture analysis , 2008, Inf. Sci..

[47]  Min Zhang,et al.  Blind Image Quality Assessment Using the Joint Statistics of Generalized Local Binary Pattern , 2015, IEEE Signal Processing Letters.

[48]  Bin Li,et al.  Palmprint Identification using Boosting Local Binary Pattern , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[49]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Xihong Wu,et al.  Boosting Local Binary Pattern (LBP)-Based Face Recognition , 2004, SINOBIOMETRICS.

[51]  Jian Fan,et al.  Texture Classification by Wavelet Packet Signatures , 1993, MVA.

[52]  Chi-Ho Chan,et al.  Multispectral Local Binary Pattern Histogram for Component-based Color Face Verification , 2007, 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems.

[53]  Shaogang Gong,et al.  Appearance Manifold of Facial Expression , 2005, ICCV-HCI.

[54]  Loris Nanni,et al.  Survey on LBP based texture descriptors for image classification , 2012, Expert Syst. Appl..

[55]  Matti Pietikäinen,et al.  Multi-scale Binary Patterns for Texture Analysis , 2003, SCIA.

[56]  Jianmin Zhao,et al.  Multi-scale block local ternary patterns for fingerprints vitality detection , 2013, 2013 International Conference on Biometrics (ICB).

[57]  Hong Liu,et al.  Crowd Density Estimation Based on Local Binary Pattern Co-Occurrence Matrix , 2012, 2012 IEEE International Conference on Multimedia and Expo Workshops.

[58]  Wen Gao,et al.  V-LGBP: Volume based local Gabor binary patterns for face representation and recognition , 2008, 2008 19th International Conference on Pattern Recognition.

[59]  Loris Nanni,et al.  Local binary patterns variants as texture descriptors for medical image analysis , 2010, Artif. Intell. Medicine.

[60]  Matti Pietikäinen,et al.  Descriptor Learning Based on Fisher Separation Criterion for Texture Classification , 2010, ACCV.

[61]  Terry Windeatt,et al.  Facial Expression Detection using Filtered Local Binary Pattern Features with ECOC Classifiers and Platt Scaling , 2010, WAPA.

[62]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[63]  Zhenhua Guo,et al.  Local directional derivative pattern for rotation invariant texture classification , 2011, Neural Computing and Applications.

[64]  Fakhry M. Khellah,et al.  Texture Classification Using Dominant Neighborhood Structure , 2011, IEEE Transactions on Image Processing.

[65]  Pradip K. Das,et al.  Face recognition using MB-LBP and PCA: A comparative study , 2014, 2014 International Conference on Computer Communication and Informatics.

[66]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[67]  Runsheng Wang,et al.  Local multiple patterns based multiresolution gray-scale and rotation invariant texture classification , 2012, Inf. Sci..

[68]  Xudong Jiang,et al.  Noise-Resistant Local Binary Pattern With an Embedded Error-Correction Mechanism , 2013, IEEE Transactions on Image Processing.

[69]  Shengcai Liao,et al.  Learning Multi-scale Block Local Binary Patterns for Face Recognition , 2007, ICB.

[70]  Changxin Gao,et al.  Pyramid-Based Multi-structure Local Binary Pattern for Texture Classification , 2010, ACCV.

[71]  Shu Liao,et al.  Face Recognition by Using Elongated Local Binary Patterns with Average Maximum Distance Gradient Magnitude , 2007, ACCV.

[72]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[73]  Vipin Tyagi,et al.  An effective scheme for image texture classification based on binary local structure pattern , 2013, The Visual Computer.

[74]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..