Exploiting structured sparsity in Bayesian experimental design
暂无分享,去创建一个
[1] Philip Schniter,et al. Turbo reconstruction of structured sparse signals , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).
[2] Robert D. Nowak,et al. Adaptive sensing for sparse recovery , 2012, Compressed Sensing.
[3] Volkan Cevher,et al. Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.
[4] C. Bouman. Markov Random Fields and Stochastic Image Models , 1995 .
[5] M. Degroot. Uncertainty, Information, and Sequential Experiments , 1962 .
[6] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[7] Sundeep Rangan,et al. Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.
[8] Emmanuel J. Candès,et al. How well can we estimate a sparse vector? , 2011, ArXiv.
[9] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[10] Matthias W. Seeger,et al. Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models , 2011, SIAM J. Imaging Sci..
[11] Andreas F. Molisch,et al. Ultrawideband propagation channels-theory, measurement, and modeling , 2005, IEEE Transactions on Vehicular Technology.
[12] Lawrence Carin,et al. Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.
[13] S. Mallat. A wavelet tour of signal processing , 1998 .
[14] Andrea Montanari,et al. Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.
[15] Andrea Montanari,et al. Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).
[16] Florian Steinke,et al. Bayesian Inference and Optimal Design in the Sparse Linear Model , 2007, AISTATS.
[17] Refractor. Uncertainty , 2001, The Lancet.