Soft imprint lithography of a bulk chalcogenide glass

We report on large-surface-area micro-patterning of a bulk chalcogenide glass by a PDMS soft mould. Micrometre-scale (width ~4μm and depth ~0.8 μm) test patterns such as ribs, channels and a lens array are successfully imprinted into the surface of high refractive index As3S7 bulk glass at 225°C without any applied external pressure. The mean-square roughness of the patterned glass surface is in the range 3 – 10 nm. Soft imprinting of bulk chalcogenide glass is an efficient method for reliable fabrication of optical and photonic devices.

[1]  S. Yannopoulos,et al.  Photoplastic effects in chalcogenide glasses: A review , 2009, 0908.1588.

[2]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[3]  Dariusz Pysz,et al.  Development of thermally stable tellurite glasses designed for fabrication of microstructured optical fibers , 2011 .

[4]  Atsushi Mori,et al.  Tellurite-based fibers and their applications to optical communication networks , 2008 .

[5]  Jasbinder S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2009 .

[6]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[7]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[8]  Kimmo Paivasaari,et al.  Imprinting the nanostructures on the high refractive index semiconductor glass , 2011 .

[9]  E. Ruckenstein,et al.  Microscopic description of a drop on a solid surface. , 2010, Advances in colloid and interface science.

[10]  Tomas Kohoutek,et al.  Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. , 2009, Optics letters.

[11]  R. Maeda,et al.  Micro Hot Embossing for Replication of Microstructures , 2002, 2002 International Microprocesses and Nanotechnology Conference, 2002. Digest of Papers..

[12]  Thomas Glinsner,et al.  High resolution lithography with PDMS molds , 2004 .

[13]  Takenobu Suzuki,et al.  Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber , 2009 .

[14]  G. P. Johari On Poisson's ratio of glass and liquid vitrification characteristics , 2006 .

[15]  P. Boolchand,et al.  Intrinsic nanoscale phase separation of bulk As2S3 glass , 2003, cond-mat/0308094.

[16]  M. Pessa,et al.  Fabrication of surface reliefs on facets of singlemode optical fibres using nanoimprint lithography , 2007 .

[17]  Abdolnasser Zakery,et al.  Optical properties and applications of chalcogenide glasses: a review , 2003 .

[18]  J. E. Elshof,et al.  Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials , 2010 .

[19]  Brandon Shaw,et al.  Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces. , 2010, Optics express.

[20]  Steve Madden,et al.  Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. , 2010, Optics express.

[21]  S. Taraskin,et al.  Phonons in vitreous silica: Dispersion and localization , 1997 .

[22]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.