Non Rigid Registration of Diffusion Tensor Images

We propose a novel variational framework for the dense non-rigid registration of Diffusion Tensor Images (DTI). Our approach relies on the differential geometrical properties of the Riemannian manifold of multivariate normal distributions endowed with the metric derived from the Fisher information matrix. The availability of closed form expressions for the geodesics and the Christoffel symbols allows us to define statistical quantities and to perform the parallel transport of tangent vectors in this space. We propose a matching energy that aims to minimize the difference in the local statistical content (means and covariance matrices) of two DT images through a gradient descent procedure. The result of the algorithm is a dense vector field that can be used to wrap the source image into the target image. This article is essentially a mathematical study of the registration problem. Some numerical experiments are provided as a proof of concept.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[3]  Karsten Grove,et al.  Group actions and curvature , 1974 .

[4]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[5]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[6]  F. Testard,et al.  Introduction a la théorie des groupes de Lie classiques , 1986 .

[7]  Timothy F. Havel,et al.  Derivatives of the Matrix Exponential and Their Computation , 1995 .

[8]  Ruzena Bajcsy,et al.  Strategies for Data Reorientation during Non-rigid Warps of Diffusion Tensor Images , 1999, MICCAI.

[9]  Ruzena Bajcsy,et al.  Similarity Measures for Matching Diffusion Tensor Images , 1999, BMVC.

[10]  James C. Gee,et al.  Elastic Matching of Diffusion Tensor Images , 2000, Comput. Vis. Image Underst..

[11]  Juan Ruiz-Alzola,et al.  Nonrigid Registration of 3D Scalar, Vector and Tensor Medical Data , 2000, MICCAI.

[12]  Nicholas Ayache,et al.  Three-dimensional multimodal brain warping using the Demons algorithm and adaptive intensity corrections , 2001, IEEE Transactions on Medical Imaging.

[13]  Carl-Fredrik Westin,et al.  Deformable registration of DT-MRI data based on transformation invariant tensor characteristics , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[14]  Juan Ruiz-Alzola,et al.  Nonrigid registration of 3D tensor medical data , 2002, Medical Image Anal..

[15]  Derek K. Jones,et al.  Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets , 2002, NeuroImage.

[16]  Carl-Fredrik Westin,et al.  Spatial normalization of diffusion tensor MRI using multiple channels , 2003, NeuroImage.

[17]  Gerardo Hermosillo,et al.  Well-Posedness of Two Nonrigid Multimodal Image Registration Methods , 2004, SIAM J. Appl. Math..

[18]  Carlo Pierpaoli,et al.  Multi-channel registration of diffusion tensor images using directional information , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[19]  Paul A. Yushkevich,et al.  Towards diffusion profile image registration , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[20]  Olivier D. Faugeras,et al.  Variational Methods for Multimodal Image Matching , 2002, International Journal of Computer Vision.

[21]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[22]  Paul A. Yushkevich,et al.  Registration of diffusion tensor images , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[23]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[24]  Paul A. Yushkevich,et al.  Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization , 2005, MICCAI.

[25]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[26]  Vincent Arsigny,et al.  Processing Data in Lie Groups : An Algebraic Approach. Application to Non-Linear Registration and Diffusion Tensor MRI. (Traitement de données dans les groupes de Lie : une approche algébrique. Application au recalage non-linéaire et à l'imagerie du tenseur de diffusion) , 2006 .

[27]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[28]  Christophe Lenglet,et al.  Geometric and variational methods for diffusion tensor MRI processing. (Méthodes géométriques et variationnelles pour le traitement d'IRM du tenseur de diffusion) , 2006 .

[29]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[30]  X. Pennec Left-Invariant Riemannian Elasticity: a distance on shape diffeomorphisms ? , 2006 .

[31]  Michael I. Miller,et al.  Diffeomorphic Matching of Diffusion Tensor Images , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[32]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.