The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala

Summary1.The structure of one class of giant tangential neurons in the lobula plate ofCalliphora, the ‘Vertical System (VS)’ has been investigated by light microscopy. Different staining and reconstruction procedures were employed to ensure that all existing VS-neurons are revealed.2.There are 11 VS-cells in a characteristic, and constant arrangement (Fig. 2). Each cell covers a particular area of the lobula plate, i.e., a distinct area of the retinotopic input array (Table 2), and therefore has a distinct receptive field.3.Although VS-cells in general tend to occupy the posterior surface of the lobula plate, only three of them (VS 2-VS 5) reside exclusively in this layer. The other cells (VS1 and VS6-VS10) have bistratified dendritic arborizations (Fig. 6), whose dorsal parts are apposed to the anterior surface of the lobula plate.4.The arrangement, territory and stratification of any given VS-cell is largely invariant in different individuals, whereas the branching pattern may vary considerably (Fig. 3).5.The present results provide the framework for physiological studies of the role of individual VS-cells in movement perception, and their involvement in the control of particular locomotor behaviour.

[1]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[2]  F. Fitch Histological Techniques for Electron Microscopy , 1961 .

[3]  M. Karnovsky,et al.  A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy , 1965 .

[4]  G. Horridge,et al.  Structure and function in the nervous systems of invertebrates , 1965 .

[5]  W. Nachtigall,et al.  Neuro-muscular control of dipteran flight. , 1967, The Journal of experimental biology.

[6]  V. Braitenberg Periodic structures and structural gradients in the visual ganglia of the fly , 1972 .

[7]  H. Eckert,et al.  Intracellular recording and staining of directionally selective motion detecting neurons in fly optic lobe , 1975, Vision Research.

[8]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[9]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[10]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[11]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[12]  K Hausen,et al.  Signal Processing in the Insect Eye , 1977 .

[13]  R. Hengstenberg Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.

[14]  C. Goodman Isogenic grasshoppers: Genetic variability in the morphology of identified neurons , 1978, The Journal of comparative neurology.

[15]  Roland Hengstenberg,et al.  Intracellular Staining of Insect Neurons with Procion Yellow , 1980 .

[16]  K. Götz Visual guidance in Drosophila. , 1980, Basic life sciences.

[17]  Intensity and motion responses of giant vertical neurons of the fly eye. , 1980, Journal of neurobiology.

[18]  Nicholas J. Strausfeld,et al.  Sexually dimorphic interneuron arrangements in the fly visual system , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  K. Hausen,et al.  An improved cobalt sulfide-silver intensification method for electron microscopy , 1980, Brain Research.

[20]  K. Götz,et al.  Visual guidance in Drosophila. In: Development and Neurobiology of Drosophila , 1980 .

[21]  Jeffrey C. Hall,et al.  Development and Neurobiology of Drosophila , 1980, Basic Life Sciences.

[22]  Action Potentials in "Non-Spiking" Visual Interneurones , 1981 .

[23]  R Hengstenberg Visuelle Drehreaktionen von Vertikalzellen in der Lobula Platte von Calliphora , 1981 .

[24]  R. Wehner Spatial Vision in Arthropods , 1981 .

[25]  D. R. Na¨ssel Transneuronal labeling with horseradish peroxidase in the visual system of the house fly , 1981, Brain Research.

[26]  M Heisenberg,et al.  Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L G Bishop,et al.  Vertical motion detectors and their synaptic relations in the third optic lobe of the fly. , 1981, Journal of neurobiology.

[28]  Transneuronal labeling with horseradish peroxidase in the visual system of the house fly. , 1981, Brain research.

[29]  R. Pierantoni,et al.  A look into the cock-pit of the fly , 1976, Cell and Tissue Research.

[30]  N. Strausfeld,et al.  Resolution of intraneuronal and transynaptic migration of cobalt in the insect visual and central nervous systems , 1976, Journal of comparative physiology.

[31]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[32]  Hendrik Eckert,et al.  The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata , 1981, Journal of comparative physiology.

[33]  K. Hausen,et al.  The synaptic organization of visual interneurons in the lobula complex of flies , 1980, Cell and Tissue Research.

[34]  D. G. Stavenga,et al.  Retinal lattice, visual field and binocularities in flies , 1977, Journal of comparative physiology.

[35]  Lewis G. Bishop,et al.  On the identification of movement detectors in the fly optic lobe , 2004, Journal of comparative physiology.

[36]  H. Eckert,et al.  Anatomical and physiological properties of the vertical cells in the third optic ganglion ofPhaenicia sericata (Diptera, Calliphoridae) , 1978, Journal of comparative physiology.