Bayesian nonparametric modeling of epileptic events

Epilepsy is a common neurological disorder that today plagues over 50 million people worldwide. The 20-40% of patients whose seizures are unable to be controlled with pharmacological treatments commonly receive scalp and intracranial electroencephalogram (EEG) monitoring to determine whether surgical treatment is appropriate. Epileptic events like large, clinical seizures and small, sub-clinical bursts recorded on the EEG are of primary diagnostic interest, but these events—which usually range from a few seconds to a few minutes across tens or hundreds of individual EEG channels—are very complex and high-dimensional. Human epileptologists are well-trained in analyzing individual epileptic events but their ability to generalize across and compare many such events is limited due to the complex, high-dimensional nature of these EEG event recordings. In this work, we develop and apply statistical models for analyzing and understanding large numbers of these events. Our Bayesian nonparametric models naturally incorporate available prior knowledge and uncertainty about these events. While motivated by these epileptic event data, our models generalize to large class of application domains. We first develop and validate a model for describing seizures that intelligently shares information across the seizures of the same patient and those of other similar patients. We then develop and validate a model for producing a fine-grained parsing of both shorter burst and longer seizure events, allowing for straightforward comparisons between the two. Finally, we apply this later model to large datasets of hundreds of epileptic bursts and seizures, finding that the bursts often display large similarities with the onsets of seizures. These results show the benefit of well-motivated, straightforward Bayesian modeling and the large impact it can have in the quantitative analysis of epileptic events.

[1]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[2]  L. Goddard Information Theory , 1962, Nature.

[3]  J. Kingman,et al.  Completely random measures. , 1967 .

[4]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[5]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[6]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[7]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[8]  Editors , 1986, Brain Research Bulletin.

[9]  Maggie,et al.  The falling sickness. , 1986, Nursing times.

[10]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[11]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[12]  E H Reynolds,et al.  Texts and documents. Translation and analysis of a cuneiform text forming part of a Babylonian treatise on epilepsy. , 1990, Medical History.

[13]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[14]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[15]  A. Dawid,et al.  Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models , 1993 .

[16]  John W. Miller,et al.  Epilepsy surgery. , 1993, Neurologic clinics.

[17]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[18]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[19]  G. Alarcón,et al.  Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. , 1995, Electroencephalography and clinical neurophysiology.

[20]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[21]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[22]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[23]  G. Alarcón,et al.  Electrophysiological aspects of interictal and ictal activity in human partial epilepsy , 1996, Seizure.

[24]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[25]  J. Pitman,et al.  The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .

[26]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[27]  W R Webber,et al.  Enhancing the detection of seizures with a clustering algorithm. , 1998, Electroencephalography and clinical neurophysiology.

[28]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[29]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[30]  Michael I. Jordan Graphical Models , 2003 .

[31]  J Gotman,et al.  Reliability of dipole models of epileptic spikes , 1999, Clinical Neurophysiology.

[32]  Michael A. West,et al.  Evaluation and Comparison of EEG Traces: Latent Structure in Nonstationary Time Series , 1999 .

[33]  H. Høgenhaven,et al.  Electroencephalography in dogs with epilepsy: similarities between human and canine findings , 1999, Acta neurologica Scandinavica.

[34]  Charles L. Wilson,et al.  High‐frequency oscillations in human brain , 1999, Hippocampus.

[35]  L. Gram,et al.  Epilepsy and seizure classification in 63 dogs: a reappraisal of veterinary epilepsy terminology. , 1999, Journal of veterinary internal medicine.

[36]  X Liu,et al.  Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[37]  Purushottam W. Laud,et al.  Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .

[38]  M. West,et al.  New methods of time series analysis of non-stationary EEG data: eigenstructure decompositions of time varying autoregressions , 1999, Clinical Neurophysiology.

[39]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[40]  H. Ishwaran,et al.  Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .

[41]  Brian Litt,et al.  Line length: an efficient feature for seizure onset detection , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[42]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[43]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[44]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[45]  J. Bellanger,et al.  Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG , 2001, Clinical Neurophysiology.

[46]  Raquel Prado,et al.  Multichannel electroencephalographic analyses via dynamic regression models with time‐varying lag–lead structure , 2001 .

[47]  Helen J. Cross,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001, Epilepsia.

[48]  H. Ishwaran,et al.  Exact and approximate sum representations for the Dirichlet process , 2002 .

[49]  Dominique M Durand,et al.  Noise and coupling affect signal detection and bursting in a simulated physiological neural network. , 2002, Journal of neurophysiology.

[50]  Jim Pitman,et al.  Poisson–Dirichlet and GEM Invariant Distributions for Split-and-Merge Transformations of an Interval Partition , 2002, Combinatorics, Probability and Computing.

[51]  M. Steriade,et al.  Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. , 2003, Journal of neurophysiology.

[52]  Brian Litt,et al.  Detection of seizure precursors from depth-EEG using a sign periodogram transform , 2003, IEEE Transactions on Biomedical Engineering.

[53]  H. Adeli,et al.  Analysis of EEG records in an epileptic patient using wavelet transform , 2003, Journal of Neuroscience Methods.

[54]  Michael A. West,et al.  Archival Version including Appendicies : Experiments in Stochastic Computation for High-Dimensional Graphical Models , 2005 .

[55]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[56]  Michael I. Jordan,et al.  Factorial Hidden Markov Models , 1995, Machine Learning.

[57]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[58]  J. White,et al.  Epilepsy in Small-World Networks , 2004, The Journal of Neuroscience.

[59]  Charles L. Wilson,et al.  High‐frequency Oscillations after Status Epilepticus: Epileptogenesis and Seizure Genesis , 2004, Epilepsia.

[60]  Steven J. Schiff,et al.  Neuronal spatiotemporal pattern discrimination: The dynamical evolution of seizures , 2005, NeuroImage.

[61]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[62]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[63]  P. Tresco,et al.  Response of brain tissue to chronically implanted neural electrodes , 2005, Journal of Neuroscience Methods.

[64]  J. Martinerie,et al.  Preictal state identification by synchronization changes in long-term intracranial EEG recordings , 2005, Clinical Neurophysiology.

[65]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[66]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[67]  Kate Chandler,et al.  Canine epilepsy: what can we learn from human seizure disorders? , 2006, Veterinary journal.

[68]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[69]  Erik B. Sudderth Graphical models for visual object recognition and tracking , 2006 .

[70]  Matthew J. Beal,et al.  Gene Expression Time Course Clustering with Countably Infinite Hidden Markov Models , 2006, UAI.

[71]  Gabriel Huerta,et al.  Multivariate time series modeling and classification via hierarchical VAR mixtures , 2006, Comput. Stat. Data Anal..

[72]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[73]  L. Garosi,et al.  Treatment with gabapentin of 11 dogs with refractory idiopathic epilepsy , 2006, Veterinary Record.

[74]  M. West,et al.  Simulation of hyper-inverse Wishart distributions in graphical models , 2007 .

[75]  Deniz Erdogmus,et al.  Clustering Approach to Quantify Long-Term Spatio-Temporal Interactions in Epileptic Intracranial Electroencephalography , 2007, Comput. Intell. Neurosci..

[76]  Kaspar Anton Schindler,et al.  Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. , 2006, Brain : a journal of neurology.

[77]  H. Berendse,et al.  The application of graph theoretical analysis to complex networks in the brain , 2007, Clinical Neurophysiology.

[78]  Yee Whye Teh,et al.  Dirichlet Processes: Tutorial and Practical Course , 2007 .

[79]  Gregory A. Worrell,et al.  Ictal source analysis: Localization and imaging of causal interactions in humans , 2007, NeuroImage.

[80]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[81]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[82]  J. French,et al.  Refractory Epilepsy: Clinical Overview , 2007, Epilepsia.

[83]  V. Srinivasan,et al.  Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks , 2007, IEEE Transactions on Information Technology in Biomedicine.

[84]  Fabrice Wendling,et al.  A Physiologically Plausible Spatio-Temporal Model for EEG Signals Recorded With Intracerebral Electrodes in Human Partial Epilepsy , 2007, IEEE Transactions on Biomedical Engineering.

[85]  Steven J Schiff,et al.  Dynamical evolution of spatiotemporal patterns in mammalian middle cortex , 2007, BMC Neuroscience.

[86]  A. Tipold,et al.  Prospective study of zonisamide therapy for refractory idiopathic epilepsy in dogs. , 2007, The Journal of small animal practice.

[87]  William P. Marnane,et al.  Gaussian Process Modeling of EEG for the Detection of Neonatal Seizures , 2007, IEEE Transactions on Biomedical Engineering.

[88]  R. Uthayakumar,et al.  Application of fractal theory in analysis of human electroencephalographic signals , 2008, Comput. Biol. Medicine.

[89]  Michael I. Jordan,et al.  Hierarchical Bayesian Nonparametric Models with Applications , 2008 .

[90]  B. Wingeier,et al.  Automated seizure onset detection for accurate onset time determination in intracranial EEG , 2008, Clinical Neurophysiology.

[91]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.

[92]  Leslie S. Prichep,et al.  Localizing epileptogenic regions in partial epilepsy using three-dimensional statistical parametric maps of background EEG source spectra , 2008, NeuroImage.

[93]  Holger A Volk,et al.  The efficacy and tolerability of levetiracetam in pharmacoresistant epileptic dogs. , 2008, Veterinary journal.

[94]  Hojjat Adeli,et al.  Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection , 2008, IEEE Transactions on Biomedical Engineering.

[95]  Hans Hallez,et al.  Detection of focal epileptiform events in the EEG by spatio-temporal dipole clustering , 2008, Clinical Neurophysiology.

[96]  W. Art Chaovalitwongse Novel quadratic programming approach for time series clustering with biomedical application , 2008, J. Comb. Optim..

[97]  A. Gelfand,et al.  The Nested Dirichlet Process , 2008 .

[98]  Michael I. Jordan,et al.  Nonparametric Bayesian Learning of Switching Linear Dynamical Systems , 2008, NIPS.

[99]  Paul C. Bressloff,et al.  Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression , 2009, Journal of Computational Neuroscience.

[100]  Michael I. Jordan,et al.  Sharing Features among Dynamical Systems with Beta Processes , 2009, NIPS.

[101]  Emily B. Fox,et al.  Bayesian nonparametric learning of complex dynamical phenomena , 2009 .

[102]  R. E. Greenblatt,et al.  Inferring spatiotemporal network patterns from intracranial EEG data , 2010, Clinical Neurophysiology.

[103]  Fabrice Wendling,et al.  From mesial temporal lobe to temporoperisylvian seizures: A quantified study of temporal lobe seizure networks , 2010, Epilepsia.

[104]  Thomas L. Griffiths,et al.  The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.

[105]  J. Gotman,et al.  High‐frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery , 2010, Annals of neurology.

[106]  Andrew J. Szeri,et al.  A model of feedback control for the charge-balanced suppression of epileptic seizures , 2010, Journal of Computational Neuroscience.

[107]  Michael A. West,et al.  Time Series: Modeling, Computation, and Inference , 2010 .

[108]  B. Litt,et al.  A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG , 2011, Epilepsy Research.

[109]  Brian Litt,et al.  Network recruitment to coherent oscillations in a hippocampal computer model. , 2011, Journal of neurophysiology.

[110]  Michael I. Jordan,et al.  Joint Modeling of Multiple Related Time Series via the Beta Process , 2011, 1111.4226.

[111]  Marija Cotic,et al.  Wavelet-based Gaussian-mixture hidden Markov model for the detection of multistage seizure dynamics: A proof-of-concept study , 2011, Biomedical engineering online.

[112]  Felice T. Sun,et al.  Responsive cortical stimulation for the treatment of epilepsy , 2011, Neurotherapeutics.

[113]  Michael I. Jordan,et al.  A Sticky HDP-HMM With Application to Speaker Diarization , 2009, 0905.2592.

[114]  Michael I. Jordan,et al.  Bayesian Nonparametric Inference of Switching Dynamic Linear Models , 2010, IEEE Transactions on Signal Processing.

[115]  Jedediah M. Singer,et al.  Quickest detection of drug-resistant seizures: An optimal control approach , 2011, Epilepsy & Behavior.

[116]  Emin Orhan Dirichlet Processes , 2012 .

[117]  Emily B. Fox,et al.  Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data , 2012, NIPS.

[118]  Brian Litt,et al.  Forecasting Seizures in Dogs with Naturally Occurring Epilepsy , 2014, PloS one.