A Tale of Conjunctive Grammars
暂无分享,去创建一个
[1] Masaru Tomita,et al. An Efficient Augmented-Context-Free Parsing Algorithm , 1987, Comput. Linguistics.
[2] Alexander Okhotin,et al. Linear-space recognition for grammars with contexts , 2017, Theor. Comput. Sci..
[3] Panos Rondogiannis,et al. Well-founded semantics for Boolean grammars , 2009, Inf. Comput..
[4] Pierre Boullier,et al. A Cubic Time Extension of Context-Free Grammars , 2000, Grammars.
[5] Alexander Okhotin. LR Parsing for Conjunctive Grammars , 2002, Grammars.
[6] Stepan Kuznetsov,et al. Conjunctive Grammars in Greibach Normal Form and the Lambek Calculus with Additive Connectives , 2013, FG.
[7] Artur Jez,et al. Computational completeness of equations over sets of natural numbers , 2014, Inf. Comput..
[8] Alexander Okhotin,et al. An extension of context-free grammars with one-sided context specifications , 2014, Inf. Comput..
[9] Alexander Okhotin,et al. Two-sided context specifications in formal grammars , 2015, Theor. Comput. Sci..
[10] Weiping Shi,et al. Single Tree Grammars , 1992, Theoretical Studies in Computer Science.
[11] Alexander Okhotin,et al. Recursive descent parsing for Boolean grammars , 2007, Acta Informatica.
[12] Seymour Ginsburg,et al. Two Families of Languages Related to ALGOL , 1962, JACM.
[13] Michael Kaminski,et al. Conjunctive grammars and alternating pushdown automata , 2013, Acta Informatica.
[14] William C. Rounds,et al. LFP A Logic for Linguistic Descriptions and an Analysis of its Complexity , 1988, Comput. Linguistics.
[15] Alexander Okhotin,et al. Conjunctive grammars with restricted disjunction , 2010, Theor. Comput. Sci..
[16] Alexander Okhotin,et al. Boolean Grammars and GSM Mappings , 2010, Int. J. Found. Comput. Sci..
[17] Jelle Hellings,et al. Conjunctive Context-Free Path Queries , 2014, ICDT.
[18] Alexander Okhotin,et al. Conjunctive and Boolean grammars: The true general case of the context-free grammars , 2013, Comput. Sci. Rev..
[19] Artur Jez,et al. On the Number of Nonterminal Symbols in Unambiguous Conjunctive Grammars , 2012, DCFS.
[20] Daniel J. Rosenkrantz,et al. Properties of Deterministic Top-Down Grammars , 1970, Inf. Control..
[21] Alexander Okhotin. Boolean grammars , 2004, Inf. Comput..
[22] Alexander Okhotin,et al. Conjunctive Categorial Grammars , 2017, MOL.
[23] Oscar H. Ibarra,et al. Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..
[24] Alexander Okhotin,et al. Generalized LR Parsing Algorithm for Grammars with One-Sided Contexts , 2017, Theory of Computing Systems.
[25] Alexander Okhotin. Conjunctive Grammars and Systems of Language Equations , 2004, Programming and Computer Software.
[26] Artur Jez,et al. Conjunctive Grammars over a Unary Alphabet: Undecidability and Unbounded Growth , 2008, Theory of Computing Systems.
[27] Véronique Terrier. Some Computational Limits of Trellis Automata , 2017, AUTOMATA.
[28] Zhendong Su,et al. Context-sensitive data-dependence analysis via linear conjunctive language reachability , 2017, POPL.
[29] Alexander Okhotin,et al. Underlying Principles and Recurring Ideas of Formal Grammars , 2018, LATA.
[30] Max Rabkin,et al. Recognizing Two-Sided Contexts in Cubic Time , 2014, CSR.
[31] Amaury Habrard,et al. Using Contextual Representations to Efficiently Learn Context-Free Languages , 2010, J. Mach. Learn. Res..
[32] Alexander Okhotin. Notes on Dual Concatenation , 2007, Int. J. Found. Comput. Sci..
[33] Alexander Okhotin. Top-Down Parsing of Conjunctive Languages , 2002, Grammars.
[34] Alexander Okhotin,et al. On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..
[35] Donald E. Knuth,et al. On the Translation of Languages from Left to Right , 1965, Inf. Control..
[36] Robert Wall,et al. Intersective context-free languages , 1993 .
[37] Leslie G. Valiant,et al. General Context-Free Recognition in Less than Cubic Time , 1975, J. Comput. Syst. Sci..
[38] Alexander Okhotin. The Hardest Language for Conjunctive Grammars , 2016, CSR.
[39] Artur Jez,et al. One-Nonterminal Conjunctive Grammars over a Unary Alphabet , 2011, Theory of Computing Systems.
[40] Martin Lange. Alternating Context-Free Languages and Linear Time mu-Calculus with Sequential Composition , 2002, EXPRESS.
[41] Mikhail Barash,et al. Programming language specification by a grammar with contexts , 2013, NCMA.
[42] Sheila A. Greibach,et al. A New Normal-Form Theorem for Context-Free Phrase Structure Grammars , 1965, JACM.
[43] Alexander Okhotin,et al. On the number of nonterminals in linear conjunctive grammars , 2004, Theor. Comput. Sci..
[44] Alexander Okhotin. Unambiguous Boolean grammars , 2007, Inf. Comput..
[45] Lothar Schmitz,et al. An Efficient Recognizer for the Boolean Closure of Context-Free Languages , 1991, Theor. Comput. Sci..
[46] Michael Kaminski,et al. LR(0) conjunctive grammars and deterministic synchronized alternating pushdown automata , 2016, J. Comput. Syst. Sci..
[47] Makoto Kanazawa. The Lambek calculus enriched with additional connectives , 1992, J. Log. Lang. Inf..
[48] Véronique Terrier,et al. On Real Time One-Way Cellular Array , 1995, Theor. Comput. Sci..
[49] Alexander Okhotin,et al. Improved normal form for grammars with one-sided contexts , 2013, Theor. Comput. Sci..
[50] Alexander Okhotin,et al. Linear grammars with one-sided contexts and their automaton representation , 2015, RAIRO Theor. Informatics Appl..
[51] Noam Chomsky,et al. Three models for the description of language , 1956, IRE Trans. Inf. Theory.
[52] Alexander Okhotin,et al. The dual of concatenation , 2005, Theor. Comput. Sci..
[53] Detlef Wotschke,et al. The Boolean Closures of the Deterministic and Nondeterministic Context-Free Languages , 1973, GI Jahrestagung.
[54] Alexander Okhotin,et al. Conjunctive Grammars , 2001, J. Autom. Lang. Comb..
[55] Alexander Okhotin,et al. Formal Languages over GF(2) , 2018, LATA.
[56] Alexander Okhotin. Parsing by matrix multiplication generalized to Boolean grammars , 2014, Theor. Comput. Sci..
[57] Jean Berstel,et al. Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.
[58] Artur Jez. Conjunctive Grammars Can Generate Non-regular Unary Languages , 2007, Developments in Language Theory.
[59] Artur Jez,et al. Unambiguous conjunctive grammars over a one-symbol alphabet , 2017, Theor. Comput. Sci..
[60] Alexander Okhotin,et al. On the expressive power of univariate equations over sets of natural numbers , 2012, Inf. Comput..
[61] Artur Jez,et al. Complexity of Equations over Sets of Natural Numbers , 2009, Theory of Computing Systems.
[62] Alexander Okhotin,et al. On Language Equations XXK = XXL and XM = N over a Unary Alphabet , 2010, Developments in Language Theory.
[63] Alexander Okhotin. Expressive power of LL(k) Boolean grammars , 2011, Theor. Comput. Sci..
[64] Michael Kaminski,et al. Linear Conjunctive Grammars and One-turn Synchronized Alternating Pushdown Automata , 2014, Int. J. Found. Comput. Sci..
[65] S. Arumugam,et al. Probabilistic Conjunctive Grammar , 2016, ICTCSDM.
[66] Ryo Yoshinaka. Learning Conjunctive Grammars and Contextual Binary Feature Grammars , 2015, LATA.
[67] Alexander Okhotin,et al. Generalized Lr Parsing Algorithm for Boolean Grammars , 2006, Int. J. Found. Comput. Sci..
[68] Alexander Okhotin,et al. Parsing Boolean grammars over a one-letter alphabet using online convolution , 2012, Theor. Comput. Sci..