M 87 at metre wavelengths: the LOFAR picture

Context. M87 is a giant elliptical galaxy located in the centre of the Virgo cluster, which harbours a supermassive black hole of mass 6.4×109 M, whose activity is responsible for the extended (80 kpc) radio lobes that surround the galaxy. The energy generated by matter falling onto the central black hole is ejected and transferred to the intra-cluster medium via a relativistic jet and morphologically complex systems of buoyant bubbles, which rise towards the edges of the extended halo. Aims. To place constraints on past activity cycles of the active nucleus, images of M 87 were produced at low radio frequencies never explored before at these high spatial resolution and dynamic range. To disentangle different synchrotron models and place constraints on source magnetic field, age and energetics, we also performed a detailed spectral analysis of M 87 extended radio-halo. Methods. We present the first observations made with the new Low-Frequency Array (LOFAR) of M 87 at frequencies down to 20 MHz. Three observations were conducted, at 15−30 MHz, 30−77 MHz and 116−162 MHz. We used these observations together with archival data to produce a low-frequency spectral index map and to perform a spectral analysis in the wide frequency range 30 MHz–10 GHz. Results. We do not find any sign of new extended emissions; on the contrary the source appears well confined by the high pressure of the intracluster medium. A continuous injection of relativistic electrons is the model that best fits our data, and provides a scenario in which the lobes are still supplied by fresh relativistic particles from the active galactic nuclei. We suggest that the discrepancy between the low-frequency radiospectral slope in the core and in the halo implies a strong adiabatic expansion of the plasma as soon as it leaves the core area. The extended halo has an equipartition magnetic field strength of 10 μG, which increases to 13 μG in the zones where the particle flows are more active. The continuous injection model for synchrotron ageing provides an age for the halo of 40 Myr, which in turn provides a jet kinetic power of 6−10 × 1044 erg s−1.

[1]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[2]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[3]  J. Roerdink,et al.  A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.

[4]  T. Cornwell,et al.  A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry , 2011, 1106.2745.

[5]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[6]  A. C. Fabian,et al.  Feedback under the microscope – I. Thermodynamic structure and AGN-driven shocks in M87 , 2010, 1006.5484.

[7]  S. Heinz,et al.  Swimming against the current: Simulations of central AGN evolution in dynamic galaxy clusters , 2010, 1003.3049.

[8]  Michael Biehl,et al.  Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.

[9]  Observatoire de la Cote d'Azur,et al.  Progress with the LOFAR Imaging Pipeline , 2009 .

[10]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[11]  P. Ade,et al.  Observations of M87 and Hydra A at 90 GHz , 2009, 0902.3149.

[12]  L. Stawarz,et al.  High-energy Particle Acceleration and Production of Ultra-high-energy Cosmic Rays in the Giant Lobes of Centaurus A , 2008, 0808.1593.

[13]  S. Tremaine,et al.  Measuring the non-thermal pressure in early-type galaxy atmospheres: a comparison of X-ray and optical potential profiles in M87 and NGC 1399 , 2007, 0711.4686.

[14]  F. Fraternali,et al.  Ultra-high energy cosmic rays, spiral galaxies and magnetars , 2008, 0806.2393.

[15]  Tim J. Cornwell,et al.  Multiscale CLEAN Deconvolution of Radio Synthesis Images , 2008, IEEE Journal of Selected Topics in Signal Processing.

[16]  C. Carilli,et al.  Accepted for Publication in the Astrophysical Journal Radiative Efficiency and Content of Extragalactic Radio Sources: toward a Universal Scaling Relation between Jet Power and Radio Power , 2022 .

[17]  J. Usón,et al.  Correcting direction-dependent gains in the deconvolution of radio interferometric images , 2008, 0805.0834.

[18]  W C Brown,et al.  Correlation of the highest-energy cosmic rays with nearby extragalactic objects. , 2007, Science.

[19]  Alle-Jan van der Veen,et al.  Self-Calibration for the LOFAR Radio Astronomical Array , 2007, IEEE Transactions on Signal Processing.

[20]  G. Rieke,et al.  Thermal and Nonthermal Infrared Emission from M87 , 2006, astro-ph/0610494.

[21]  R. Kraft,et al.  Filaments, Bubbles, and Weak Shocks in the Gaseous Atmosphere of M87 , 2006, astro-ph/0604583.

[22]  J. Arons,et al.  Heating and Nonthermal Particle Acceleration in Relativistic, Transverse Magnetosonic Shock Waves in Proton-Electron-Positron Plasmas , 2006, astro-ph/0609034.

[23]  Cambridge,et al.  Using radio bubbles to constrain the matter content of AGN jets , 2006, astro-ph/0608466.

[24]  A. Fabian,et al.  X-ray Spectroscopy of Cooling Clusters , 2005, astro-ph/0512549.

[25]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[26]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[27]  M. Krause,et al.  Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations , 2005, astro-ph/0507367.

[28]  Eric S. Perlman,et al.  The X-Ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation , 2005, astro-ph/0503024.

[29]  Jan E. Noordam,et al.  LOFAR calibration challenges , 2004, SPIE Astronomical Telescopes + Instrumentation.

[30]  A. Fabian,et al.  Particle energies and filling fractions of radio bubbles in cluster cores , 2004, astro-ph/0409055.

[31]  J. Culhane The X-ray spectra of clusters of galaxies , 1979, Naturwissenschaften.

[32]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[33]  M. Prieto,et al.  Particle Accelerators in the Hot Spots of Radio Galaxy 3C 445, Imaged with the VLT , 2002, Science.

[34]  A. Wilson,et al.  Chandra Imaging of the X-Ray Core of the Virgo Cluster , 2002, astro-ph/0202504.

[35]  A. Finoguenov,et al.  XMM-Newton observation of M 87 - I. Single-phase temperature structure of intracluster medium , 2002, astro-ph/0201242.

[36]  T. Ensslin,et al.  Simulation of radio plasma in clusters of galaxies , 2001 .

[37]  H. Andernach,et al.  Four Extreme Relic Radio Sources in Clusters of Galaxies , 2001, astro-ph/0105267.

[38]  W. Forman,et al.  Evolution of Buoyant Bubbles in M87 , 2000 .

[39]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[40]  K. Blundell,et al.  The Spectra and Energies of Classical Double Radio Lobes , 2000, astro-ph/0001327.

[41]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[42]  K. Blundell,et al.  The Nature and Evolution of Classical Double Radio Sources from Complete Samples , 1998, astro-ph/9810197.

[43]  Martin J. Rees,et al.  The matter content of the jet in M87: evidence for an electron—positronjet , 1996 .

[44]  R. Sault,et al.  Understanding radio polarimetry. I. Mathematical foundations , 1996 .

[45]  H. Böhringer,et al.  The interaction of the radio halo of M87 with the cooling intracluster medium of the Virgo cluster , 1995 .

[46]  Namir E. Kassim,et al.  Subarcminute resolution imaging of radio sources at 74 MHz with the very large array , 1993 .

[47]  C. Carilli,et al.  Multifrequency radio observations of Cygnus A - Spectral aging in powerful radio galaxies , 1991 .

[48]  C. P. Stern,et al.  The radio to X-ray spectrum of the M87 jet and nucleus , 1991 .

[49]  S. Shore,et al.  The energetics and evolution of jet-fed radio sources , 1989 .

[50]  R. Laing The sidedness of jets and depolarization in powerful extragalactic radio sources , 1988, Nature.

[51]  J. Leahy,et al.  A systematic asymmetry in the polarization properties of double radio sources with one jet , 1988, Nature.

[52]  E. Feigelson,et al.  X-rays from the radio halo of M87 , 1987 .

[53]  A. Hillas The Origin of Ultra-High-Energy Cosmic Rays , 1984 .

[54]  D. Fabricant,et al.  X-ray measurements of the mass of M 87. , 1980 .

[55]  J. Peacock,et al.  The relation between radio luminosity and spectrum for extended extragalactic radio sources , 1980 .

[56]  G. Miley The structure of extended extragalactic radio sources , 1980 .

[57]  W. Erickson,et al.  26.3-MHz radio source survey. II - Radio source positions and fluxes , 1975 .

[58]  R. Roger,et al.  The low-frequency spectra of nonthermal radio sources , 1973 .

[59]  S. Gull,et al.  Bubble Model of Extragalactic Radio Sources , 1973, Nature.

[60]  J. Roberts,et al.  Radio Astrophysics : Nonthermal Processes in Galactic and Extragalactic Sources , 1970 .

[61]  B. Ryabov,et al.  The Spectra of Discrete Radio Sources at Decametric Wavelengths—I , 1969 .

[62]  J. D. Lacey,et al.  Spectral flux densities of radio sources at 22.25 MHz. I. , 1969 .

[63]  K. Kellermann,et al.  THE SPECTRA OF RADIO SOURCES IN THE REVISED 3C CATALOGUE. , 1969 .

[64]  C. Purton,et al.  OBSERVATIONS OF RADIO SOURCES AT 10.03 MHz. , 1968 .

[65]  W. Baade,et al.  On the Identification of Radio Sources. , 1954 .

[66]  B. Mills Apparent Angular Sizes of Discrete Radio Sources: Observations at Sydney , 1952, Nature.

[67]  J. G. Bolton,et al.  Positions of Three Discrete Sources of Galactic Radio-Frequency Radiation , 1949, Nature.