Guided Local Search for Solving SAT and Weighted MAX-SAT Problems

In this paper, we show how Guided Local Search (GLS) can be applied to the SAT problem and show how the resulting algorithm can be naturally extended to solve the weighted MAX-SAT problem. GLS is a general, penalty-based meta-heuristic, which sits on top of local search algorithms to help guide them out of local minima. GLS has been shown to be successful in solving a number of practical real-life problems, such as the traveling salesman problem, BT"s workforce scheduling problem, the radio link frequency assignment problem, and the vehicle routing problem. We present empirical results of applying GLS to instances of the SAT problem from the DIMACS archive and also a small set of weighted MAX-SAT problem instances and compare them with the results of other local search algorithms for the SAT problem.

[1]  Jeremy Frank,et al.  Weighting for Godot: Learning Heuristics for GSAT , 1996, AAAI/IAAI, Vol. 1.

[2]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[3]  Andrew J. Davenport,et al.  GENET: A Connectionist Architecture for Solving Constraint Satisfaction Problems by Iterative Improvement , 1994, AAAI.

[4]  Christos Voudouris Solving the Radio Link Frequency Assignment Problem using Guided Local Search , 2001 .

[5]  Jun Gu,et al.  Global Optimization for Satisfiability (SAT) Problem , 1994, IEEE Trans. Knowl. Data Eng..

[6]  Yi Shang,et al.  The Discrete Lagrangian Theory and Its Application to Solve Nonlinear Discrete Constrained Optimization Problems Table of Contents Chapter 1 Introduction , 1998 .

[7]  Benjamin W. Wah,et al.  Discrete Lagrangian-Based Search for Solving MAX-SAT Problems , 1997, IJCAI.

[8]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[9]  John E. Mitchell,et al.  A branch and cut algorithm for MAX-SAT and weighted MAX-SAT , 1996, Satisfiability Problem: Theory and Applications.

[10]  Jun Gu,et al.  Local search for satisfiability (SAT) problem , 1993, IEEE Trans. Syst. Man Cybern..

[11]  Toby Walsh,et al.  Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.

[12]  Henry A. Kautz,et al.  Solving Problems with Hard and Soft Constraints Using a Stochastic Algorithm for MAX-SAT , 1995 .

[13]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[14]  Edward Tsang,et al.  Solving constraint satisfaction problems using neural networks , 1991 .

[15]  Panos M. Pardalos,et al.  Approximate solution of weighted MAX-SAT problems using GRASP , 1996, Satisfiability Problem: Theory and Applications.

[16]  Patrick Prosser,et al.  Guided Local Search for the Vehicle Routing Problem , 1997 .

[17]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..

[18]  Henry Kautz,et al.  Exploiting Variable Dependency in Local Search , 1997, IJCAI 1997.

[19]  Benjamin W. Wah,et al.  A discrete Lagrangian-based global-search method for solving satisfiability problems , 1996, Satisfiability Problem: Theory and Applications.

[20]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[21]  C. Voudouris,et al.  Guided Local Search — an Illustrative Example in Function Optimisation , 1998 .

[22]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[23]  Jeremy Frank,et al.  When Gravity Fails: Local Search Topology , 1997, J. Artif. Intell. Res..

[24]  Byungki Cha,et al.  Adding New Clauses for Faster Local Search , 1996, AAAI/IAAI, Vol. 1.

[25]  Barry Richards,et al.  Non-systematic Search and Learning: An Empirical Study , 1998, CP.

[26]  Benjamin W. Wah,et al.  A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems , 1996, J. Glob. Optim..

[27]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[28]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[29]  Bart Selman,et al.  An Empirical Study of Greedy Local Search for Satisfiability Testing , 1993, AAAI.

[30]  Chu Min Li,et al.  Look-Ahead Versus Look-Back for Satisfiability Problems , 1997, CP.

[31]  Benjamin W. Wah,et al.  Improving the performance of discrete Lagrange-multiplier search for solving hard SAT problems , 1998, Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294).

[32]  Mauricio G. C. Resende,et al.  A GRASP for satisfiability , 1993, Cliques, Coloring, and Satisfiability.

[33]  Hans van Maaren,et al.  A two phase algorithm for solving a class of hard satissfiability problems , 1998 .

[34]  B. Wah,et al.  Global Search Methods for Solving Nonlinear Optimization Problems , 1997 .

[35]  Steven E. Hampson,et al.  Large plateaus and plateau search in Boolean Satisfiability problems: When to give up searching and start again , 1993, Cliques, Coloring, and Satisfiability.

[36]  David A. McAllester,et al.  GSAT and Dynamic Backtracking , 1994, KR.

[37]  Edward P. K. Tsang,et al.  Fast local search and guided local search and their application to British Telecom's workforce scheduling problem , 1997, Oper. Res. Lett..

[38]  Ian P. Gent,et al.  Unsatisfied Variables in Local Search , 1995 .

[39]  Byungki Cha,et al.  Performance Test of Local Search Algorithms Using New Types of Random CNF Formulas , 1995, IJCAI.

[40]  Jun Gu,et al.  Local Search for Satissability (sat) Problem , 1993 .

[41]  Bart Selman,et al.  Ten Challenges in Propositional Reasoning and Search , 1997, IJCAI.

[42]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[43]  Thomas Stützle,et al.  Evaluating Las Vegas Algorithms: Pitfalls and Remedies , 1998, UAI.