DNA- and DNA-CTMA: novel bio-nanomaterials for application in photonics and in electronics

Functionalization of deoxyribonucleic acid (DNA) with surfactants, photosensitive and conductivity increasing molecules as well as thin film processing is reviewed and discussed. The comparative spectroscopic studies of chemical and photothermal stability of several chromophores show a better stability in DNA-cetyltrimethylammonium (CTMA) surfactant complexes than in polycarbonate (PC) or poly(ethylene glycol) (PEG) matrices. Also the optical damage threshold in nanosecond pulsed laser illumination is higher in thin films of bio-macromolecules such as DNA, DNACTMA, collagen than in PC. The electrical conductivity of doped DNA based systems exhibits a typical ionic character and can be improved by an appropriate doping. Practical applications of DNA based complexes are reviewed and discussed.

[1]  James G. Grote,et al.  Biopolymer-based material for optical phase conjugation , 2008 .

[2]  Naoya Ogata,et al.  Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes : Large-scale preparation and optical and thermal properties , 2001 .

[3]  Yutaka Kawabe,et al.  Electroluminescence as a probe for electrical and optical properties of deoxyribonucleic acid , 2002, SPIE Optics + Photonics.

[4]  Barry Randall Jennings,et al.  Electro-optics and dielectrics of macromolecules and colloids , 1979 .

[5]  Naoya Ogata,et al.  DNA-Lipid Hybrid Films Derived from Chiral Lipids , 2008 .

[6]  Norihisa Kobayashi,et al.  Color-tunable multilayer organic light emitting diode composed of DNA complex and tris(8-hydroxyquinolinato)aluminum , 2010 .

[7]  Francois Kajzar,et al.  Optical control of an integrated interferometer using a photochromic polymer , 2001 .

[8]  J. Barton,et al.  Mechanisms for DNA charge transport. , 2010, Chemical reviews.

[9]  ANDREW J. STECKL,et al.  DNA – a new material for photonics? , 2007 .

[10]  Francois Kajzar,et al.  Nonlinear Optical Properties of Functionalized DNA-CTMA complexes , 2011 .

[11]  James G. Grote,et al.  Bio-Organic Optoelectronic Devices Using DNA , 2009 .

[12]  Lili Wang,et al.  Optical properties of photochromic-compound-doped marine-biopolymer DNA-surfactant complex films for switching applications , 2004, SPIE OPTO.

[13]  Emily M. Heckman,et al.  DNA: new class of polymer , 2006, SPIE OPTO.

[14]  J. Grote,et al.  Grating inscription in picosecond regime in thin films of functionalized DNA. , 2007, Optics express.

[15]  James G. Grote,et al.  On the Stability and Degradation of DNA Based Thin Films , 2010 .

[16]  Jaroslaw Mysliwiec,et al.  Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules , 2011 .

[17]  Francois Kajzar,et al.  Optical Properties of Thin Films of DNA-CTMA and DNA-CTMA Doped with Nile Blue , 2012 .

[18]  Masahiro Wada,et al.  Strongly luminescent rare-earth-ion-doped DNA-CTMA complex film and fiber materials , 2002, SPIE/OSA/IEEE Asia Communications and Photonics.

[19]  Yi-Wen Chiu,et al.  Functional DNA biopolymers and nanocomposite for optoelectronic applications , 2012 .

[20]  F. Crick,et al.  The complementary structure of deoxyribonucleic acid , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  James Grote,et al.  Biopolymer materials show promise for electronics and photonics applications , 2008 .

[22]  Emily M. Heckman,et al.  Investigation of polymers and marine-derived DNA in optoelectronics , 2004 .

[23]  Lili Wang,et al.  Light amplification in dye-doped DNA-surfactant complex films , 2000, SPIE Optics + Photonics.

[24]  Masaya Nogi,et al.  Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry , 2008 .

[25]  F. M. Gray Solid Polymer Electrolytes: Fundamentals and Technological Applications , 1991 .

[26]  Francois Kajzar,et al.  Study of the amplified spontaneous emission in a dye-doped biopolymer-based material , 2009 .

[27]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[28]  Emily M. Heckman,et al.  Development and performance of an all-DNA-based electro-optic waveguide modulator , 2006, SPIE Security + Defence.

[29]  Tomoji Kawai,et al.  Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules. , 2001, Physical review letters.

[30]  Emily M. Heckman,et al.  Development of an all-DNA-surfactant electro-optic modulator , 2006, SPIE OPTO.

[31]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Ansevin,et al.  Comparison of theory to experiment for DNA thermal denaturation , 1978, Nature.

[33]  James G. Grote,et al.  DNA-based ionic conducting membranes , 2011 .

[34]  Emily M. Heckman,et al.  Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer , 2006 .

[35]  Naoya Ogata,et al.  Amplified Spontaneous Emission from Fluorescent‐Dye‐Doped DNA–Surfactant Complex Films , 2000 .

[36]  Emily M. Heckman,et al.  DNA-based nonlinear photonic materials , 2004, SPIE Optics + Photonics.

[37]  Emily M. Heckman,et al.  Poling and optical studies of DNA NLO waveguides , 2005, SPIE Optics + Photonics.

[38]  Emily M. Heckman,et al.  Development of chemical sensors using polymer optical waveguides fabricated with DNA , 2005, SPIE OPTO.

[39]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[40]  D. Klinov,et al.  Proximity-induced superconductivity in DNA. , 2001, Science.

[41]  Hans-Achim Wagenknecht Ladungstransfer durch die DNA , 2002 .

[42]  Yi-Wen Chiu,et al.  Efficient Biopolymer Blue Organic Light-Emitting Devices with Low Driving Voltage , 2012 .

[43]  Cees Dekker,et al.  Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale , 2001 .

[44]  Jovan Mijovic,et al.  Dynamics of Deoxyribonucleic Acid Solutions As Studied by Dielectric Relaxation Spectroscopy and Dynamic Mechanical Spectroscopy , 2005 .

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  James G. Grote,et al.  Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices , 2003, SPIE OPTO.

[47]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[48]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[49]  Jaroslaw Mysliwiec,et al.  Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system , 2010 .

[50]  V. D. Lakhno,et al.  The problem of DNA conductivity , 2008 .

[51]  Patrick S. Noonan,et al.  Surfactant–DNA interactions at the liquid crystal–aqueous interface , 2012 .

[52]  James G. Grote,et al.  Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer , 2006 .

[53]  James G. Grote,et al.  Biopolymer Thin Films for Optoelectronics Applications , 2010 .

[54]  D. D. Eley,et al.  Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state , 1962 .

[55]  James G. Grote,et al.  EFFECT OF EXTERNAL ELECTRICAL STIMULI ON DNA-BASED BIOPOLYMERS , 2009 .

[56]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[57]  James G. Grote,et al.  Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric , 2009 .

[58]  Hans-Werner Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[59]  Ileana Rau,et al.  Ionically conducting DNA-based membranes for eletrochromic devices , 2011 .

[60]  Emily M. Heckman,et al.  Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications , 2005 .

[61]  Naoya Ogata,et al.  Optical and photochromic properties of spiropyran-doped marine-biopolymer DNA-surfactant complex films , 2005, SPIE OPTO.

[62]  A. Pawlicka,et al.  Gelatin- and DNA-based ionic conducting membranes for electrochromic devices , 2009, Security + Defence.

[63]  Paras N Prasad,et al.  Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex. , 2006, Optics letters.

[64]  Francois Kajzar,et al.  Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing , 2011 .

[65]  Joseph C Genereux,et al.  DNA-mediated charge transport in redox sensing and signaling. , 2010, Journal of the American Chemical Society.

[66]  James G. Grote,et al.  Stability of Selected Chromophores in Biopolymer Matrix , 2012 .

[67]  James G. Grote,et al.  Optical properties of deoxyribonucleic acid (DNA) polymer host , 2006, SPIE Security + Defence.

[68]  James G. Grote,et al.  DNA - novel nanomaterial for applications in photonics and in electronics , 2012 .

[69]  Francois Kajzar,et al.  Amplified spontaneous emission in the spiropyran-biopolymer based system , 2009 .

[70]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[71]  Marta Ibisate,et al.  Optical gain in DNA-DCM for lasing in photonic materials. , 2009, Optics letters.