Cavity ring-down spectroscopy sensor for detection of hydrogen chloride

Abstract. A laser-based cavity ring-down spectroscopy (CRDS) sensor for measurement of hydrogen chloride (HCl) has been developed and characterized. The instrument uses light from a distributed-feedback diode laser at 1742 nm coupled to a high finesse optical cavity to make sensitive and quantifiable concentration measurements of HCl based on optical absorption. The instrument has a (1σ) limit of detection of

[1]  Stanley C. Solomon,et al.  Stratospheric ozone depletion: A review of concepts and history , 1999 .

[2]  Charles C. Harb,et al.  A laser-locked cavity ring-down spectrometer employing an analog detection scheme , 2000 .

[3]  Albert A. Ruth,et al.  Incoherent broad-band cavity-enhanced absorption spectroscopy , 2003 .

[4]  Lars Kaleschke,et al.  Halogens and their role in polar boundary-layer ozone depletion , 2007 .

[5]  D. Lowe,et al.  Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements , 2007 .

[6]  Brian J. Orr,et al.  Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases , 2002 .

[7]  D. Blake,et al.  Airborne measurements of HCl from the marine boundary layer to the lower stratosphere over the North Pacific Ocean during INTEX-B , 2008 .

[8]  J. D. Neece,et al.  Anthropogenic Sources of Chlorine and Ozone Formation in Urban Atmospheres , 2000 .

[9]  Hans-Peter Loock,et al.  Cavity-enhanced spectroscopy and sensing , 2014 .

[10]  Kevin K. Lehmann,et al.  Optimal Signal Processing in Cavity Ring-Down Spectroscopy , 2009 .

[11]  J. Galloway,et al.  Volatile inorganic Cl in surface air over eastern North America , 1995 .

[12]  J. Laane Frontiers of molecular spectroscopy , 2009 .

[13]  T. L. Thompson,et al.  Quantifying Stratospheric Ozone in the Upper Troposphere with in Situ Measurements of HCl , 2004, Science.

[14]  Volker Ebert,et al.  Laser-based measurements of line strength, self- and pressure-broadening coefficients of the H35Cl R(3) absorption line in the first overtone region for pressures up to 1 MPa , 2010 .

[15]  P. Crutzen,et al.  Halogen cycling and aerosol pH in the Hawaiian marine boundary layer , 2003 .

[16]  D. Romanini,et al.  CW cavity ring down spectroscopy , 1997 .

[17]  C. Piccolo,et al.  Pressure broadening and shift of transitions of the first overtone of HCl , 2001 .

[18]  Paul Rabinowitz,et al.  Trace moisture detection using continuous-wave cavity ring-down spectroscopy. , 2003, Analytical chemistry.

[19]  A. Ravishankara,et al.  Absolute intensities for third and fourth overtone absorptions in HNO{sub 3} and H{sub 2}O{sub 2} measured by cavity ring down spectroscopy , 2000 .

[20]  A. Fried,et al.  Application of tunable diode laser absorption for trace stratospheric measurements of HCl: laboratory results. , 1984, Applied optics.

[21]  Barbara A. Paldus,et al.  An historical overview of cavity-enhanced methods , 2005 .

[22]  J. Thornton,et al.  Understanding the role of the ground surface in HONO vertical structure: High resolution vertical profiles during NACHTT‐11 , 2013 .

[23]  A. Fried,et al.  Difference frequency generation spectrometer for simultaneous multispecies detection. , 2010, Optics express.

[24]  Kenneth W. Busch,et al.  Cavity-ringdown spectroscopy : an ultratrace-absorption measurement technique , 1999 .

[25]  J. Thornton,et al.  Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado , 2013 .

[26]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[27]  J. Thornton,et al.  Phase partitioning of soluble trace gases with size‐resolved aerosols in near‐surface continental air over northern Colorado, USA, during winter , 2013 .

[28]  J. Dibb,et al.  Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE : Tropospheric Ozone Production about the Spring Equinox (TOPSE) , 2003 .

[29]  R. May,et al.  Airborne laser infrared absorption spectrometer (ALIAS-II) for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely piloted aircraft platforms. , 1999, Applied optics.

[30]  J. Stutz,et al.  Inorganic chlorine and bromine in coastal New England air during summer , 2007 .

[31]  D. Dabdub,et al.  Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. , 2003, Environmental science & technology.

[32]  T. Jaeger,et al.  Diode laser spectroscopy of gaseous HCl , 1996 .

[33]  C. Camy‐Peyret,et al.  Spaceborne measurements of the upper stratospheric HCL vertical distribution in early 1992 and the trend in total stratospheric , 1997 .

[34]  Thomas E. Graedel,et al.  Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive Chlorine Emissions Inventory , 1999 .

[35]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[36]  U. Platt,et al.  Hemispheric average Cl atom concentration from 13 C/ 12 C ratios in atmospheric methane , 2004 .

[37]  R. May,et al.  Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCI, N(2)O, CH(4), NO(2), and HNO(3). , 1994, Applied optics.

[38]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[39]  P. Midgley,et al.  Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: Reactive Chlorine Emissions Inventory , 1999 .

[40]  Herwig Kogelnik,et al.  Laser beams and resonators , 1966 .

[41]  I. R. Burling,et al.  Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions , 2010 .

[42]  Y. Yokouchi,et al.  Measurements of C2‐C6 hydrocarbons during the Polar Sunrise1992 Experiment: Evidence for Cl atom and Br atom chemistry , 1994 .

[43]  K. Lehmann,et al.  Long-term stability in continuous wave cavity ringdown spectroscopy experiments. , 2010, Applied optics.

[44]  Thomas E. Graedel,et al.  Tropospheric budget of reactive chlorine , 1995 .

[45]  Giel Berden,et al.  Cavity ring-down spectroscopy : techniques and applications , 2009 .

[46]  B. T. Chen,et al.  An improved virtual impactor: design and performance , 1987 .

[47]  P. Crutzen,et al.  A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer , 1996, Nature.

[48]  G. Meijer,et al.  Cavity Ringdown Spectroscopy , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[49]  J. Galloway,et al.  Measurement technique for inorganic chlorine gases in the marine boundary layer , 1993 .

[50]  Calculation of spectroscopic parameters for diatomic molecules of atmospheric interest , 1990 .

[51]  M. Zahniser,et al.  Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere , 2008 .

[52]  Richard N. Zare,et al.  Cavity ring-down spectroscopy for quantitative absorption measurements , 1995 .