Design optimization and implementation of a microgravity capacitive HARPSS accelerometer

This paper reports on the design optimization and implementation of a lateral capacitive accelerometer with high sensitivity and micro-g resolution, fabricated through the high-aspect ratio polysilicon and single-crystal silicon process on regular silicon wafers. A new implementation of vertical corrugation in silicon electrodes is developed to reduce the mechanical noise equivalent acceleration of the sensor. The predicted effect of corrugation on thermomechanical noise and also on static sensitivity is verified using ANSYS steady-state thermal simulation and FEMLAB linear stationary electrostatics analysis, respectively. The number of corrugated electrodes and the sense gap spacing is optimized to minimize the system (sensor + circuit) noise floor, while satisfying process and electronics limits. The open-loop differential sensitivity of a 60-/spl mu/m-thick prototype accelerometer is measured to be 0.25 V/g equivalent to 4.5 pF/g over a 1-g range. The estimated total noise equivalent acceleration of the system (sensor + circuit) is 0.95 /spl mu/g//spl radic/Hz in atmosphere.

[1]  F. Ayazi,et al.  A low cost wafer-level MEMS packaging technology , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[2]  K. Najafi,et al.  An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry , 2004 .

[3]  Serrita A. McAuley,et al.  Silicon micromachining using a high-density plasma source , 2001 .

[4]  R. P. van Kampen Bulk-Micromachined Capacitive Servo-Accelerometer , 1995 .

[5]  J. B. Starr Squeeze-film damping in solid-state accelerometers , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[6]  Bernhard E. Boser,et al.  A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics , 1999, IEEE J. Solid State Circuits.

[7]  F. Ayazi,et al.  A high resolution, stictionless, CMOS compatible SOI accelerometer with a low noise, low power, 0.25 /spl mu/m CMOS interface , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[8]  F. Ayazi,et al.  High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology , 2000, Journal of Microelectromechanical Systems.

[9]  Gian Luca Morini,et al.  LAMINAR-TO-TURBULENT FLOW TRANSITION IN MICROCHANNELS , 2004 .

[10]  Sukhan Lee,et al.  Micromachined inertial sensors , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[11]  T. Gabrielson Mechanical-thermal noise in micromachined acoustic and vibration sensors , 1993 .

[12]  Jonathan J. Bernstein,et al.  Low-noise MEMS vibration sensor for geophysical applications , 1999 .

[13]  T. Veijola,et al.  Model for gas film damping in a silicon accelerometer , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[14]  Farrokh Ayazi,et al.  A 2.5V 14-bit ΣΔ CMOS-SOI capacitive accelerometer , 2004 .

[15]  K. Najafi,et al.  An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process , 2000, Journal of Microelectromechanical Systems.

[16]  K. Najafi,et al.  A HARPSS polysilicon vibrating ring gyroscope , 2001 .