Diffusive random laser modes under a spatiotemporal scope.

At present the prediction and characterization of the emission output of a diffusive random laser remains a challenge, despite the variety of investigated materials and theoretical interpretations given up to now. Here, a new mode selection method, based on spatial filtering and ultrafast detection, which allows to separate individual lasing modes and follow their temporal evolution is presented. In particular, the work explores the random laser behavior of a ground powder of an organic-inorganic hybrid compound based on Rhodamine B incorporated into a di-ureasil host. The experimental approach gives direct access to the mode structure and dynamics, shows clear modal relaxation oscillations, and illustrates the lasing modes stochastic behavior of this diffusive scattering system. The effect of the excitation energy on its modal density is also investigated. Finally, imaging measurements reveal the dominant role of diffusion over amplification processes in this kind of unconventional lasers.

[1]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[2]  P. Kumar,et al.  Photon statistics of random lasers with resonant feedback. , 2001, Physical review letters.

[3]  Hakan E. Tureci,et al.  Self-consistent multimode lasing theory for complex or random lasing media (17 pages) , 2006 .

[4]  Y. Ling,et al.  Mode repulsion and mode coupling in random lasers , 2003 .

[5]  A. De Luca,et al.  Random lasing and weak localization of light in dye-doped nematic liquid crystals. , 2006, Optics express.

[6]  Robert P. H. Chang,et al.  Random laser action in semiconductor powder , 1999 .

[7]  C. Conti,et al.  Non-locality and collective emission in disordered lasing resonators , 2013, Light: Science & Applications.

[8]  X. Wu,et al.  Random lasing in weakly scattering systems , 2006, physics/0606105.

[9]  X. Wu,et al.  Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems , 2008 .

[10]  Claudio Conti,et al.  The mode-locking transition of random lasers , 2011, 1304.3652.

[11]  R. Balda,et al.  On the temporal behavior of Nd3+ random lasers. , 2013, Optics letters.

[12]  C. Vanneste,et al.  PARTIALLY PUMPED RANDOM LASERS , 2014 .

[13]  Hui Cao,et al.  Dynamic response and relaxation oscillations in random lasers , 2002 .

[14]  Z. Vardeny,et al.  Universal properties of random lasers , 2003 .

[15]  S. Mujumdar,et al.  Dependence of the Gaussian-Lévy transition on the disorder strength in random lasers , 2013 .

[16]  A. Mosk,et al.  Experimental studies on the mode structure of random lasers , 2010 .

[17]  Federico Tommasi,et al.  Experimental and theoretical investigation of statistical regimes in random laser emission , 2013, 1309.2412.

[18]  Ravitej Uppu,et al.  Identification of statistical regimes and crossovers in coherent random laser emission. , 2012, Optics letters.

[19]  Arkadi Chipouline,et al.  Random lasing in π-conjugated films and infiltrated opals , 2001 .

[20]  C. Conti,et al.  Tunable degree of localization in random lasers with controlled interaction , 2012, 1207.4181.

[21]  Oleg Zaitsev,et al.  Recent developments in the theory of multimode random lasers , 2009, 0906.3449.

[22]  Diederik S. Wiersma,et al.  Statistical regimes of random laser fluctuations , 2007 .

[23]  M. A. Arriandiaga,et al.  Time‐resolved random laser spectroscopy of inhomogeneously broadened systems , 2014 .

[24]  Ray H. Baughman,et al.  Stimulated emission in high-gain organic media , 1999 .

[25]  S. Rotter,et al.  Ab initio self-consistent laser theory and random lasers , 2008, 0811.3542.

[26]  H. Ramachandran,et al.  Lévy statistics of emission from a novel random amplifying medium: an optical realization of the Arrhenius cascade. , 2006, Optics letters.

[27]  C. Vanneste,et al.  Nonlinear effects in random lasers , 2011, 1107.5990.

[28]  Pang,et al.  Theory of lasing in a multiple-scattering medium. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  Y Ling,et al.  Probing localized states with spectrally resolved speckle techniques. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Stefan Rotter,et al.  Strong Interactions in Multimode Random Lasers , 2008, Science.

[31]  A Yamilov,et al.  Absorption-induced confinement of lasing modes in diffusive random media. , 2005, Optics letters.

[32]  Roman J. B. Dietz,et al.  Co-existence of strongly and weakly localized random laser modes , 2009 .

[33]  Jiang,et al.  Time dependent theory for random lasers , 2000, Physical review letters.

[34]  Mikhail A. Noginov,et al.  Characterization of light scattering in translucent ceramics , 2007 .

[35]  Xu,et al.  Spatial confinement of laser light in active random media , 2000, Physical review letters.

[36]  Hui Cao,et al.  Absorption induced confinement of lasing modes in diffusive random medium , 2005 .

[37]  D. Wiersma,et al.  Light diffusion with gain and random lasers. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Hui Cao,et al.  Modes of random lasers , 2010, 1001.4671.

[39]  Patrick Sebbah,et al.  Selective Excitation of Localized Modes in Active Random Media , 2001 .

[40]  John D. Joannopoulos,et al.  Coupling, competition, and stability of modes in random lasers , 2004 .

[41]  Ad Lagendijk,et al.  Spatial extent of random laser modes. , 2007, Physical review letters.

[42]  Diederik S. Wiersma,et al.  Chaotic behavior of a random laser with static disorder , 2007 .

[43]  Renato Torre,et al.  Amplified extended modes in random lasers. , 2004, Physical review letters.

[44]  L. Carlos,et al.  Real time random laser properties of Rhodamine-doped di-ureasil hybrids. , 2010, Optics express.

[45]  N. Lawandy,et al.  Laser action in strongly scattering media , 1994, Nature.