Bayesian analysis of interiors of HD 219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55 Cnc e, and HD 97658b using stellar abundance proxies

Using a generalized Bayesian inference method, we aim to explore the possible interior structures of six selected exoplanets for which planetary mass and radius measurements are available in addition to stellar host abundances: HD~219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55~Cnc~e, and HD~97658b. We aim to investigate the importance of stellar abundance proxies for the planetary bulk composition (namely Fe/Si and Mg/Si) on prediction of planetary interiors. We performed a full probabilistic Bayesian inference analysis to formally account for observational and model uncertainties while obtaining confidence regions of structural and compositional parameters of core, mantle, ice layer, ocean, and atmosphere. We determined how sensitive our parameter predictions depend on (1) different estimates of bulk abundance constraints and (2) different correlations of bulk abundances between planet and host star. [...] Although the possible ranges of interior structures are large, structural parameters and their correlations are constrained by the sparse data. The probability for the tested exoplanets to be Earth-like is generally very low. Furthermore, we conclude that different estimates of planet bulk abundance constraints mainly affect mantle composition and core size.

[1]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[2]  S. Seager,et al.  A FRAMEWORK FOR QUANTIFYING THE DEGENERACIES OF EXOPLANET INTERIOR COMPOSITIONS , 2009, 0912.3288.

[3]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[4]  A. Santerne,et al.  Constraining planet structure from stellar chemistry : the cases of CoRoT-7, Kepler-10, and Kepler-93 , 2015, 1507.08081.

[5]  H. Newsom Composition of the Solar System, Planets, Meteorites, and Major Terrestrial Reservoirs , 2013 .

[6]  C. Prieto,et al.  S 4 N: A Spectroscopic Survey of Stars in the Solar Neighborhood , 2003 .

[7]  Christoph Mordasini,et al.  PLANETARY POPULATION SYNTHESIS COUPLED WITH ATMOSPHERIC ESCAPE: A STATISTICAL VIEW OF EVAPORATION , 2014, 1409.2879.

[8]  Oxygen abundances in nearby stars - Clues to the formation and evolution of the Galactic disk , 2007, astro-ph/0701362.

[9]  N. Santos,et al.  Chemical abundances of 451 stars from the HARPS GTO planet search program - Thin disc, thick disc, and planets , 2009, 0902.3374.

[10]  A. Burrows,et al.  TRANSIT CONFIRMATION AND IMPROVED STELLAR AND PLANET PARAMETERS FOR THE SUPER-EARTH HD 97658 b AND ITS HOST STAR , 2014, 1402.5850.

[11]  Maria Mercedes Lopez-Morales,et al.  The HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun , 2015, 1507.08532.

[12]  Y. Alibert,et al.  Elemental ratios in stars vs planets (Research Note) , 2015, 1507.01343.

[13]  S. L. Thompson,et al.  Improvements in the CHART D radiation-hydrodynamic code III: revised analytic equations of state , 1974 .

[14]  M. Meyer,et al.  On the origin of elemental abundances in the terrestrial planets , 2012, 1209.3635.

[15]  P. Tackley,et al.  Can we constrain the interior structure of rocky exoplanets from mass and radius measurements , 2015, 1502.03605.

[16]  R. P. Butler,et al.  The abundance distribution of stars with planets , 2006 .

[17]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[18]  F. Thielemann,et al.  Abundances of neutron-capture elements in stars of the Galactic disk substructures , 2013, 1303.1730.

[19]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[20]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[21]  O. Bienaymé,et al.  Spectroscopic investigation of stars on the lower main sequence , 2008 .

[22]  Brice-Olivier Demory,et al.  Variability in the super-Earth 55 Cnc e , 2015, 1505.00269.

[23]  C. Prieto,et al.  S4N: A spectroscopic survey of stars in the solar neighborhood: The nearest 15 pc , 2004, astro-ph/0403108.

[24]  F. Timmes,et al.  STELLAR ABUNDANCES IN THE SOLAR NEIGHBORHOOD: THE HYPATIA CATALOG , 2014, 1405.6719.

[25]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[26]  Y. Alibert,et al.  A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes , 2016, 1609.03908.

[27]  T. Guillot,et al.  Composition and fate of short-period super-Earths: The case of CoRoT-7b , 2009, 0907.3067.

[28]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[29]  G. González The stellar metallicity—giant planet connection , 1997 .

[30]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[31]  J. Lunine,et al.  PLANETESIMAL COMPOSITIONS IN EXOPLANET SYSTEMS , 2012, 1208.3289.

[32]  B. Mason Composition of the Earth , 1966, Nature.

[33]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[34]  J. Fortney,et al.  THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY , 2013, 1305.0269.

[35]  R. Helled,et al.  The effect of composition on the evolution of giant and intermediate-mass planets , 2013, 1307.2033.

[36]  Diana Valencia,et al.  Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties? , 2007, 0704.3454.

[37]  M. F. Astronomie,et al.  Atmospheric mass-loss and evolution of short-period exoplanets: the examples of CoRoT-7b and Kepler-10b , 2013, 1306.0973.

[38]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[39]  C. Soubiran,et al.  On the correlation of elemental abundances with kinematics among galactic disk stars , 2004, astro-ph/0401234.

[40]  Jaymie M. Matthews,et al.  A SUPER-EARTH TRANSITING A NAKED-EYE STAR , 2011, 1104.5230.

[41]  G. Morard,et al.  Ab initio equation of state of iron up to 1500 GPa , 2013 .

[42]  Tilman Spohn,et al.  Rocky super-Earth interiors. Structure and internal dynamics of CoRoT-7b and Kepler-10b , 2012 .

[43]  J. Tennyson,et al.  DETECTION OF AN ATMOSPHERE AROUND THE SUPER-EARTH 55 CANCRI E , 2015, 1511.08901.

[44]  J. Eastman,et al.  MOST DETECTS TRANSITS OF HD 97658b, A WARM, LIKELY VOLATILE-RICH SUPER-EARTH , 2013 .

[45]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[46]  T. Guillot On the radiative equilibrium of irradiated planetary atmospheres , 2010, 1006.4702.

[47]  Y. Takeda Fundamental Parameters and Elemental Abundances of 160 F-G-K Stars Based on OAO Spectrum Database , 2007 .

[48]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[49]  Björn Benneke,et al.  A map of the large day–night temperature gradient of a super-Earth exoplanet , 2016, Nature.

[50]  Kang-Min Kim,et al.  ABUNDANCES OF REFRACTORY ELEMENTS FOR G-TYPE STARS WITH EXTRASOLAR PLANETS , 2011, 1105.3083.

[51]  Lars Hernquist,et al.  COLLISIONAL STRIPPING AND DISRUPTION OF SUPER-EARTHS , 2009, 0907.0234.

[52]  A. Collier Cameron,et al.  The HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun , 2015 .

[53]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[54]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[55]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[56]  W. Benz,et al.  Critical core mass for enriched envelopes: the role of H2O condensation , 2015, 1502.01160.

[57]  John M Prausnitz,et al.  Equation of State , 2020, Inverse Heat Conduction and Heat Exchangers.

[58]  U. Heiter,et al.  Stars within 15 Parsecs: Abundances for a Northern Sample , 2005 .

[59]  N. Santos,et al.  CHEMICAL CLUES ON THE FORMATION OF PLANETARY SYSTEMS: C/O VERSUS Mg/Si FOR HARPS GTO SAMPLE , 2010, Proceedings of the International Astronomical Union.

[60]  D. P. O'Brien,et al.  The Compositional Diversity of Extrasolar Terrestrial Planets , 2011 .

[61]  U. Maryland,et al.  Improved precision on the radius of the nearby super-Earth 55 Cnc e , 2011, 1110.4783.

[62]  Jr.,et al.  Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites , 2006, astro-ph/0606671.

[63]  F. Thevenin,et al.  Stellar Iron Abundances: Non-LTE Effects , 1999, astro-ph/9906433.

[64]  H. Jeffreys A Treatise on Probability , 1922, Nature.

[65]  F. Thielemann,et al.  Mn abundances in the stars of the Galactic disc with metallicities -1.0 < [Fe/H] < 0.3 , 2015, 1509.05341.

[66]  W. Cochran,et al.  REVISITING ρ1 CANCRI e: A NEW MASS DETERMINATION OF THE TRANSITING SUPER-EARTH , 2012, 1208.5709.

[67]  O. Kuskov,et al.  Core Sizes and Internal Structure of Earth's and Jupiter's Satellites , 2001 .

[68]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[69]  A. Szentgyorgyi,et al.  THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS , 2014, 1412.8687.

[70]  A. Burrows Highlights in the study of exoplanet atmospheres , 2014, Nature.

[71]  P. Bodenheimer,et al.  FORMATION AND STRUCTURE OF LOW-DENSITY EXO-NEPTUNES , 2011, 1106.2807.

[72]  A. Burrows,et al.  MASS-RADIUS RELATIONS AND CORE-ENVELOPE DECOMPOSITIONS OF SUPER-EARTHS AND SUB-NEPTUNES , 2014, 1402.4818.

[73]  S. G. Sousa,et al.  New and updated stellar parameters for 90 transit hosts - The effect of the surface gravity , 2013, 1309.1998.

[74]  E. Agol,et al.  REVISED MASSES AND DENSITIES OF THE PLANETS AROUND KEPLER-10 , 2015, 1601.06168.

[75]  J W Morgan,et al.  Chemical composition of Earth, Venus, and Mercury. , 1980, Proceedings of the National Academy of Sciences of the United States of America.