The Hyperbolic Geometry of Illumination-Induced Chromaticity Changes

The non-negativity of color signals implies that they span a conical space with a hyperbolic geometry. We use perspective projections to separate intensity from chromaticity, and for 3-D color descriptors the chromatic properties are represented by points on the unit disk. Descriptors derived from the same object point but under different imaging conditions can be joined by a hyperbolic geodesic. The properties of this model are investigated using multichannel images of natural scenes and black body illuminants of different temperatures. We show, over a series of static scenes with different illuminants, how illumination changes influence the hyperbolic distances and the geodesics. Descriptors derived from conventional RGB images are also addressed.

[1]  Reiner Lenz,et al.  Lie Methods in Color Signal Processing: Illumination Effects , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[2]  Javier Hernández-Andrés,et al.  Group Theoretical Structure of Spectral Spaces , 2005, Journal of Mathematical Imaging and Vision.

[3]  Reiner Lenz,et al.  Color Measurements with a Consumer Digital Camera Using Spectral Estimation Techniques , 2005, SCIA.

[4]  R. Lenz,et al.  Statistical properties of color-signal spaces. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  William R. Mathew,et al.  Color as a Science , 2005 .

[6]  Geoffrey J. Woolfe,et al.  Color Space and Its Divisions: Color Order from Antiquity to the Present , 2004, J. Electronic Imaging.

[7]  Reiner Lenz,et al.  Efficient Invariant Representations , 1998, International Journal of Computer Vision.

[8]  Flávio P. Ferreira,et al.  Statistics of spatial cone-excitation ratios in natural scenes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  Reiner Lenz Two stage principal component analysis of color , 2002, IEEE Trans. Image Process..

[10]  S. J.P. Characteristic spectra of Munsell colors , 2002 .

[11]  Andrea J. van Doorn,et al.  The Structure of Colorimetry , 2000, AFPAC.

[12]  Olivier D. Faugeras,et al.  Algebraic and Geometric Tools to Compute Projective and Permutation Invariants , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  C. L. Siegel Topics in complex function theory vol. II : automorphic function and Abelian integrals / C.L. Siegel; translated by A. Shenitzer, M. Tretkoff , 1971 .

[14]  J. Lehner Discontinuous Groups and Automorphic Functions , 1964 .

[15]  E. Schrödinger Grundlinien einer Theorie der Farbenmetrik im Tagessehen , 1920 .

[16]  Hermann Grassmann,et al.  Zur Theorie der Farbenmischung , 1853 .