Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach

[1]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[2]  D. Jacob,et al.  Mapping annual mean ground‐level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States , 2004 .

[3]  Basil W. Coutant,et al.  Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality , 2004 .

[4]  Hans C. van Houwelingen,et al.  The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani and Jerome Friedman, Springer, New York, 2001. No. of pages: xvi+533. ISBN 0‐387‐95284‐5 , 2004 .

[5]  D. Jacob,et al.  Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. , 2005, Environmental science & technology.

[6]  Yang Liu,et al.  Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS , 2007 .

[7]  Jie Guang,et al.  Correlation between PM concentrations and aerosol optical depth in eastern China , 2009 .

[8]  P. Gupta,et al.  Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach , 2009 .

[9]  Menghua Wang,et al.  Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective , 2009 .

[10]  F. Dominici,et al.  Emergency Admissions for Cardiovascular and Respiratory Diseases and the Chemical Composition of Fine Particle Air Pollution , 2009, Environmental health perspectives.

[11]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[12]  José Antonio Lozano,et al.  Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables , 2011 .

[14]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[15]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[16]  J. Schwartz,et al.  A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations , 2011 .

[17]  Yuan Cheng,et al.  Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model , 2012 .

[18]  A. Cohen,et al.  Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. , 2012, Environmental science & technology.

[19]  C. Tucker,et al.  Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction , 2012 .

[20]  M. Brauer,et al.  Risk of Nonaccidental and Cardiovascular Mortality in Relation to Long-term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study , 2012, Environmental health perspectives.

[21]  Alexei Lyapustin,et al.  Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis , 2012 .

[22]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[23]  C. Sioutas,et al.  Particulate Air Pollution, Ambulatory Heart Rate Variability, and Cardiac Arrhythmia in Retirement Community Residents with Coronary Artery Disease , 2013, Environmental health perspectives.

[24]  M. G. Estes,et al.  Estimating ground-level PM(2.5) concentrations in the southeastern U.S. using geographically weighted regression. , 2013, Environmental research.

[25]  D. Broday,et al.  Improved retrieval of PM2.5 from satellite data products using non-linear methods. , 2013, Environmental pollution.

[26]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[27]  B. N. Holben,et al.  Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013 , 2014 .

[28]  Yang Liu,et al.  Estimating ground-level PM2.5 in China using satellite remote sensing. , 2014, Environmental science & technology.

[29]  Mathilde Pascal,et al.  Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities , 2014 .

[30]  A. Lyapustin,et al.  10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data , 2013, Atmospheric chemistry and physics.

[31]  W. You,et al.  Estimating PM2.5 in Xi'an, China using aerosol optical depth: a comparison between the MODIS and MISR retrieval models. , 2015, The Science of the total environment.

[32]  Zhengqiang Li,et al.  Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation , 2015 .

[33]  Jianping Huang,et al.  Detection of anthropogenic dust using CALIPSO lidar measurements , 2015 .

[34]  R. Muller,et al.  Air Pollution in China: Mapping of Concentrations and Sources , 2015, PloS one.

[35]  Alexei Lyapustin,et al.  Using High-Resolution Satellite Aerosol Optical Depth To Estimate Daily PM2.5 Geographical Distribution in Mexico City. , 2015, Environmental science & technology.

[36]  J. Fung,et al.  Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 , 2015 .

[37]  Jing Wei,et al.  Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China , 2016 .

[38]  Yang Liu,et al.  Estimating ground-level PM 2.5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements , 2016 .

[39]  Yang Liu,et al.  Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta Region of China using improved linear mixed effects model , 2016 .

[40]  Yang Liu,et al.  Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013 , 2015, Environmental health perspectives.

[41]  Yi Li,et al.  National-Scale Estimates of Ground-Level PM2.5 Concentration in China Using Geographically Weighted Regression Based on 3 km Resolution MODIS AOD , 2016, Remote. Sens..

[42]  Xiaoping Liu,et al.  Satellite-based ground PM 2.5 estimation using timely structure adaptive modeling , 2016 .

[43]  J. H. Belle,et al.  Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach. , 2017, Environmental science & technology.

[44]  Liang-pei Zhang,et al.  Point-surface fusion of station measurements and satellite observations for mapping PM 2.5 distribution in China: Methods and assessment , 2016, 1607.02976.

[45]  Yang Liu,et al.  Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting , 2017, Scientific Reports.

[46]  Qingyang Xiao,et al.  Full-coverage high-resolution daily PM 2.5 estimation using MAIAC AOD in the Yangtze River Delta of China , 2017 .

[47]  Robert E. Dickinson,et al.  PM2.5 Pollution in China and How It Has Been Exacerbated by Terrain and Meteorological Conditions , 2017 .

[48]  Qiuhong Tang,et al.  Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model , 2017 .

[49]  Dan Chen,et al.  Assimilating AOD retrievals from GOCI and VIIRS to forecast surface PM2.5 episodes over Eastern China , 2018 .

[50]  Lorraine A. Remer,et al.  Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions , 2018, Atmospheric Measurement Techniques.

[51]  Qingqing He,et al.  Satellite-based mapping of daily high-resolution ground PM 2.5 in China via space-time regression modeling , 2018 .

[52]  Lin Sun,et al.  Verification, improvement and application of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS , 2018 .

[53]  Cole Brokamp,et al.  Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model. , 2018, Environmental science & technology.

[54]  Jiansheng Wu,et al.  A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China. , 2018, The Science of the total environment.

[55]  Zhanqing Li,et al.  Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors , 2018, Atmospheric Chemistry and Physics.

[56]  Qingyang Xiao,et al.  Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. , 2018, Environmental pollution.

[57]  Alexei Lyapustin,et al.  MODIS Collection 6 MAIAC algorithm , 2018, Atmospheric Measurement Techniques.

[58]  Wei Gong,et al.  Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China. , 2018, Environmental pollution.

[59]  Yiran Peng,et al.  MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison , 2019, Atmospheric Environment.

[60]  Zhanqing Li,et al.  Improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products , 2019, Atmospheric Environment.