Mechanical properties of low-cost, earth-abundant chalcogenide thermoelectric materials, PbSe and PbS, with additions of 0–4 % CdS or ZnS

[1]  T. Thompson,et al.  Influence of silver nanoparticle addition, porosity, and processing technique on the mechanical properties of Ba0.3Co4Sb12 skutterudites , 2014, Journal of Materials Science.

[2]  S. Said,et al.  A review on thermoelectric renewable energy: Principle parameters that affect their performance , 2014 .

[3]  C. Balázsi,et al.  Influence of processing on fracture toughness of Si3N4+graphene platelet composites , 2013 .

[4]  M. Kanatzidis,et al.  High-temperature elastic moduli of thermoelectric SnTe1±x – y SiC nanoparticulate composites , 2013, Journal of Materials Science.

[5]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[6]  Gloria J. Lehr,et al.  Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material , 2013 .

[7]  M. Kanatzidis,et al.  Corrigendum: High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[8]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[9]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[10]  M. Kanatzidis,et al.  Bloating in (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055%PbI2 Thermoelectric Specimens as a Result of Processing Conditions , 2012, Journal of Electronic Materials.

[11]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[12]  M. Kanatzidis,et al.  Nanostructures boost the thermoelectric performance of PbS. , 2011, Journal of the American Chemical Society.

[13]  J. Sakamoto,et al.  Room temperature Young's modulus, shear modulus, and Poisson's ratio of Ce0.9Fe3.5Co0.5Sb12 and Co0.95Pd0.05Te0.05Sb3 skutterudite materials , 2010 .

[14]  Edward J. Timm,et al.  Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials , 2010 .

[15]  F. Ren,et al.  Porosity dependence of elastic moduli in LAST (Lead–antimony–silver–tellurium) thermoelectric materials , 2009 .

[16]  M. Kanatzidis,et al.  Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials , 2009 .

[17]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[18]  H. Schock,et al.  Hardness as a function of composition for n-type LAST thermoelectric material , 2008 .

[19]  Min Zhou,et al.  Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering , 2008 .

[20]  Z. Dashevsky,et al.  Mechanical properties of PbTe-based thermoelectric semiconductors , 2008 .

[21]  H. Schock,et al.  Young's modulus as a function of composition for an n-type lead–antimony–silver–telluride (LAST) thermoelectric material , 2007 .

[22]  E. Wachsman,et al.  The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides , 2007 .

[23]  I. Petrov,et al.  Vacancy hardening in single-crystal TiNx(001) layers , 2003 .

[24]  Victor N. Kaliakin,et al.  Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods , 2001 .

[25]  Roy W. Rice,et al.  Porosity of Ceramics: Properties and Applications , 1998 .

[26]  Carl C. M. Wu,et al.  Hardness-grain-size relations in ceramics , 1994 .

[27]  Xin Jiang,et al.  ELASTIC CONSTANTS AND HARDNESS OF ION-BEAM-SPUTTERED TINX FILMS MEASURED BY BRILLOUIN SCATTERING AND DEPTH-SENSING INDENTATION , 1991 .

[28]  Y. Noda,et al.  Temperature dependence of atomic thermal parameters of lead chalcogenides, PbS, PbSe and PbTe , 1987 .

[29]  C. Eaborn Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology. New Series. Group II; Atomic and Molecular Physics; Vol. 11 Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Supplement 3 , 1982 .

[30]  G. Lippmann,et al.  Elastic Constants of PbSe , 1971, August 16.

[31]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[32]  R. Dalven A review of the semiconductor properties of PbTe, PbSe, PbS and PbO , 1969 .

[33]  R. Roy,et al.  Micro-indentation hardness variation as a function of composition for polycrystalline solutions in the systems PbS/PbTe, PbSe/PbTe, and PbS/PbSe , 1969 .

[34]  K. I. Portnoi,et al.  Modulus of normal elasticity of porosity-free titanium and zirconium nitrides , 1968 .

[35]  J. Bloem,et al.  A Relation between Hardness and Stoichiometry in Lead Sulphide Single Crystals , 1955, Nature.

[36]  T. S. Rao,et al.  Elastic Constants of Galena , 1951, Nature.

[37]  M. Kanatzidis,et al.  Mechanical Characterization of PbTe-based Thermoelectric Materials , 2007 .

[38]  Peter H. Stauffer,et al.  Rare earth elements: critical resources for high technology , 2002 .

[39]  John L. Sarrao,et al.  Resonant ultrasound spectroscopy : applications to physics, materials measurements, and nondestructive evaluation , 1997 .

[40]  M. Matthewson,et al.  Mechanical properties of ceramics , 1996 .

[41]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[42]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .