Parameter Estimation of Fire Propagation Models Using Level Set Methods

[1]  R. Burgan,et al.  BEHAVE : Fire Behavior Prediction and Fuel Modeling System -- FUEL Subsystem , 1984 .

[2]  P. Andrews BEHAVE : Fire Behavior Prediction and Fuel Modeling System - BURN Subsystem, Part 1 , 1986 .

[3]  D. H. Anderson,et al.  Graphical simulation of bushfire spread , 1990 .

[4]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[5]  Janice L. Coen,et al.  A Coupled AtmosphereFire Model: Convective Feedback on Fire-Line Dynamics , 1996 .

[6]  Ioannis G. Karafyllidis,et al.  A model for predicting forest fire spreading using cellular automata , 1997 .

[7]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[8]  Howard P. Hanson,et al.  The potential and promise of physics-based wildfire simulation , 2000 .

[9]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[10]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[11]  Ron Kimmel,et al.  Numerical Geometry of Images , 2003, Springer New York.

[12]  Pallop Huabsomboon,et al.  Implicit Level Set Methods for a Fire Spread Model , 2006 .

[13]  A. Martín del Rey,et al.  Modelling forest fire spread using hexagonal cellular automata , 2007 .

[14]  Lara A. Arroyo,et al.  Fire models and methods to map fuel types: The role of remote sensing , 2008 .

[15]  Jonathan D. Beezley,et al.  A wildland fire model with data assimilation , 2007, Math. Comput. Simul..

[16]  Constantinos I. Siettos,et al.  A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990 , 2008, Appl. Math. Comput..

[17]  Ian M. Mitchell The Flexible, Extensible and Efficient Toolbox of Level Set Methods , 2008, J. Sci. Comput..

[18]  S. Popescu,et al.  Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps , 2008 .

[19]  David E. Keyes,et al.  Modeling wildland fire propagation with level set methods , 2007, Comput. Math. Appl..

[20]  Roland Herzog,et al.  Optimal Control of the Classical Two-Phase Stefan Problem in Level Set Formulation , 2011, SIAM J. Sci. Comput..

[21]  Tomàs Margalef,et al.  Dynamic Data-Driven Genetic Algorithm for forest fire spread prediction , 2012, J. Comput. Sci..

[22]  Eun Heui Kim,et al.  Thermal-image-based wildfire spread simulation using a linearized model of an advection–diffusion–reaction equation , 2012, Simul..

[23]  Shin-en Lo,et al.  A Fire Simulation Model for Heterogeneous Environments Using the Level Set Method , 2012 .

[24]  Chris Lautenberger,et al.  Wildland fire modeling with an Eulerian level set method and automated calibration , 2013 .

[25]  Claire J. Tomlin,et al.  Regularization-based identification for level set equations , 2013, 52nd IEEE Conference on Decision and Control.

[26]  Tomàs Margalef,et al.  Towards a Dynamic Data Driven Wildfire Behavior Prediction System at European Level , 2014, ICCS.

[27]  Didier Lucor,et al.  Interactive comment on “Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter estimation” , 2014 .

[28]  Vivien Mallet,et al.  Evaluation of forest fire models on a large observation database , 2014 .

[29]  Tiziano Ghisu,et al.  An Improved Cellular Automata for Wildfire Spread , 2015, ICCS.

[30]  James E. Hilton,et al.  Effects of spatial and temporal variation in environmental conditions on simulation of wildfire spread , 2015, Environ. Model. Softw..

[31]  Andrea Mentrelli,et al.  Modelling and simulation of wildland fire in the framework of the level set method , 2016 .

[32]  Chad M. Hoffman,et al.  A comparison of level set and marker methods for the simulation of wildland fire front propagation , 2016 .

[33]  Andrew L. Sullivan,et al.  Curvature effects in the dynamic propagation of wildfires , 2016 .

[34]  Jean-Baptiste Filippi,et al.  Turbulence and fire-spotting effects into wild-land fire simulators , 2016, Commun. Nonlinear Sci. Numer. Simul..

[35]  Cong Zhang,et al.  Evaluation of a data-driven wildland fire spread forecast model with spatially-distributed parameter estimation in simulations of the FireFlux I field-scale experiment , 2017 .

[36]  R. Rothermel A Mathematical Model for Predicting Fire Spread in Wildland Fuels , 2017 .

[37]  Jose C. F. Pereira,et al.  On the parametric uncertainty quantification of the Rothermel's rate of spread model , 2017 .

[38]  D. Muñoz‐Esparza,et al.  An Accurate Fire‐Spread Algorithm in the Weather Research and Forecasting Model Using the Level‐Set Method , 2018 .

[39]  A. Alessandri,et al.  Optimal Propagating Fronts Using Hamilton-Jacobi Equations , 2019 .

[40]  Angelo Alessandri,et al.  Optimal Control of Propagating Fronts by Using Level Set Methods and Neural Approximations , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[41]  Cong Zhang,et al.  State-parameter estimation approach for data-driven wildland fire spread modeling: Application to the 2012 RxCADRE S5 field-scale experiment , 2019, Fire Safety Journal.

[42]  Dominique Morvan Validation of Wildfire Spread Models , 2020 .

[43]  Zhaolou Cao,et al.  Learning-based prediction of wildfire spread with real-time rate of spread measurement , 2020 .

[44]  Angelo Alessandri,et al.  State and observer-based feedback control of normal flow equations , 2020, Autom..

[45]  Marián Marčiš,et al.  Parameter Estimation for the Forest Fire Propagation Model , 2020 .

[46]  Marj Tonini,et al.  A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy , 2020 .