WLC42-3: MIMO-OFDM Beamforming for Improved Channel Estimation

This paper takes a system view of the MIMO-OFDM beamformer design problem. We present a design method that helps improve the receiver channel estimation performance without damaging the optimality of beamforming. We design a so-called smoothed singular value decomposition (SSVD) algorithm to get smooth equivalent channels after beamforming, and thus the receiver can apply interpolation and smoothing to improve channel estimation. We then present some analysis of the statistical characteristics of the equivalent channel, which will be useful in designing the channel estimation. Simulation results are shown to support our algorithm.

[1]  Mikael Skoglund,et al.  On the capacity of a multiple-antenna communication link with channel side information , 2003, IEEE J. Sel. Areas Commun..

[2]  Petre Stoica,et al.  Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion , 2001, IEEE Trans. Commun..

[3]  Andrea J. Goldsmith,et al.  Transmitter optimization and optimality of beamforming for multiple antenna systems , 2004, IEEE Transactions on Wireless Communications.

[4]  B. Simon Representations of finite and compact groups , 1995 .

[5]  Brian M. Sadler,et al.  Pilot-assisted wireless transmissions: general model, design criteria, and signal processing , 2004, IEEE Signal Processing Magazine.

[6]  Michael P. Fitz,et al.  Layered Orthogonal Lattice Detector for Two Transmit Antenna Communications , 2005, ArXiv.

[7]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  G. Stewart Perturbation theory for the singular value decomposition , 1990 .

[10]  Michael P. Fitz,et al.  Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels , 1999, IEEE Trans. Commun..

[11]  A. Robert Calderbank,et al.  Space-time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths , 1999, IEEE Trans. Commun..

[12]  Georgios B. Giannakis,et al.  Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations , 2003, IEEE Transactions on Information Theory.

[13]  Anna Scaglione,et al.  Optimal designs for space-time linear precoders and decoders , 2002, IEEE Trans. Signal Process..

[14]  Gregory W. Wornell,et al.  Efficient use of side information in multiple-antenna data transmission over fading channels , 1998, IEEE J. Sel. Areas Commun..

[15]  Sirikiat Lek Ariyavisitakul,et al.  Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels , 1999, IEEE J. Sel. Areas Commun..

[16]  Geoffrey Ye Li,et al.  MIMO-OFDM for wireless communications: signal detection with enhanced channel estimation , 2002, IEEE Trans. Commun..

[17]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[18]  Per Ola Börjesson,et al.  OFDM channel estimation by singular value decomposition , 1996, Proceedings of Vehicular Technology Conference - VTC.

[19]  Robert W. Heath,et al.  Interpolation based transmit beamforming for MIMO-OFDM with limited feedback , 2004, IEEE Transactions on Signal Processing.

[20]  David J. Love,et al.  Feedback methods for multiple-input multiple-output wireless systems , 2004 .

[21]  B. Hassibi,et al.  Three-transmit-antenna space-time codes based on SU(3) , 2005, IEEE Transactions on Signal Processing.