Determining arbitrary Feynman integrals by vacuum integrals

By introducing an auxiliary parameter, we find a series representation for Feynman integral, which is defined as analytical continuation of a calculable series. To obtain the series representation, one only needs to deal with some much simpler vacuum integrals. The series representation therefore translates the problem of computing Feynman integrals to the problem of performing analytical continuations. As a Feynman integral is fully determined by its series representation, its reduction relation to master integrals can be achieved. Furthermore, differential equations of master integrals with respective to the auxiliary parameter can also be set up. By solving the differential equations, the desired analytical continuations are realized. The series representation thus provides a novel method to reduce and compute Feynman integrals.

[1]  G. Mishima High-energy expansion of two-loop massive four-point diagrams , 2018, Journal of High Energy Physics.

[2]  H. Hartanto,et al.  Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case , 2018, Journal of High Energy Physics.

[3]  M. Steinhauser,et al.  Double Higgs boson production at NLO in the high-energy limit: complete analytic results , 2018, Journal of High Energy Physics.

[4]  Li Lin Yang,et al.  Towards a new approximation for pair-production and associated-production of the Higgs boson , 2018, Journal of High Energy Physics.

[5]  P. Mastrolia,et al.  Feynman integrals and intersection theory , 2018, Journal of High Energy Physics.

[6]  T. Gehrmann,et al.  Analytic result for the nonplanar hexa-box integrals , 2018, Journal of High Energy Physics.

[7]  B. Page,et al.  Differential equations from unitarity cuts: nonplanar hexa-box integrals , 2018, Journal of High Energy Physics.

[8]  A. Kardos A new reduction strategy for special negative sectors of planar two-loop integrals without Laporta algorithm , 2018, 1812.05622.

[9]  V. Ravindran,et al.  Two-loop massless QCD corrections to the g + g → H + H four-point amplitude , 2018, Journal of High Energy Physics.

[10]  J. Boehm,et al.  Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections , 2018, Journal of High Energy Physics.

[11]  Daniel Hulme,et al.  Systematic approximation of multi-scale Feynman integrals , 2018, Journal of High Energy Physics.

[12]  D. Kosower Direct solution of integration-by-parts systems , 2018, Physical Review D.

[13]  B. Mistlberger Higgs boson production at hadron colliders at N3LO in QCD , 2018, Journal of High Energy Physics.

[14]  J. Boehm,et al.  Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals , 2017, Physical Review D.

[15]  A. V. Sidorov,et al.  Asymptotics of the contour of the stationary phase and efficient evaluation of the Mellin-Barnes integral for the F 3 structure function , 2017, 1712.05601.

[16]  P. Mastrolia,et al.  Master integrals for the NNLO virtual corrections to μe scattering in QED: the non-planar graphs , 2017, Journal of High Energy Physics.

[17]  Stephan Jahn,et al.  pySecDec: A toolbox for the numerical evaluation of multi-scale integrals , 2017, Comput. Phys. Commun..

[18]  Yan-Qing Ma,et al.  A Systematic and Efficient Method to Compute Multi-loop Master Integrals , 2017, 1711.09572.

[19]  M. Prausa Mellin–Barnes meets Method of Brackets: a novel approach to Mellin–Barnes representations of Feynman integrals , 2017, The European Physical Journal C.

[20]  B. Kniehl,et al.  Three-loop massive tadpoles and polylogarithms through weight six , 2017, 1705.05136.

[21]  T. Riemann,et al.  New prospects for the numerical calculation of Mellin-Barnes integrals in Minkowskian kinematics , 2017, 1704.02288.

[22]  B. Page,et al.  Subleading Poles in the Numerical Unitarity Method at Two Loops , 2017, 1703.05255.

[23]  B. Page,et al.  Two-Loop Four-Gluon Amplitudes from Numerical Unitarity. , 2017, Physical review letters.

[24]  A. Maier,et al.  Complete renormalization of QCD at five loops , 2017, Journal of High Energy Physics.

[25]  Yang Zhang,et al.  Azurite : An algebraic geometry based package for finding bases of loop integrals , 2016, Comput. Phys. Commun..

[26]  T. Riemann,et al.  The two-loop electroweak bosonic corrections to sin 2 θ beff , 2017 .

[27]  J. Gluza,et al.  Efficient evaluation of massive Mellin-Barnes integrals , 2016, 1609.09111.

[28]  S. Borowka,et al.  Erratum: Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence [Phys. Rev. Lett. 117, 012001 (2016)]. , 2016, Physical review letters.

[29]  T. Peraro Scattering amplitudes over finite fields and multivariate functional reconstruction , 2016, 1608.01902.

[30]  P. Mastrolia,et al.  Adaptive integrand decomposition in parallel and orthogonal space , 2016, Journal of High Energy Physics.

[31]  T. Riemann,et al.  Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions , 2016, 1607.07538.

[32]  T. Peraro,et al.  Local integrands for two-loop all-plus Yang-Mills amplitudes , 2016, 1606.02244.

[33]  S. Borowka,et al.  Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence. , 2016, Physical review letters.

[34]  K. J. Larsen,et al.  Integration-by-parts reductions from unitarity cuts and algebraic geometry , 2015, 1511.01071.

[35]  A. Smirnov,et al.  FIESTA4: Optimized Feynman integral calculations with GPU support , 2015, Comput. Phys. Commun..

[36]  H. Ita Two-loop integrand decomposition into master integrals and surface terms , 2015, 1510.05626.

[37]  U. Johann,et al.  The two-loop electroweak bosonic corrections to sin2.THETA.effb , 2016 .

[38]  T. Riemann,et al.  Non-planar Feynman diagrams and Mellin-Barnes representations with AMBRE 3.0 , 2015 .

[39]  Gudrun Heinrich,et al.  SecDec-3.0: Numerical evaluation of multi-scale integrals beyond one loop , 2015, Comput. Phys. Commun..

[40]  A. V. Smirnov,et al.  FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..

[41]  T. Luthe Fully massive vacuum integrals at 5 loops , 2015 .

[42]  R. Lee Reducing differential equations for multiloop master integrals , 2014, 1411.0911.

[43]  Andreas von Manteuffel,et al.  A novel approach to integration by parts reduction , 2014, ArXiv.

[44]  A. V. Smirnov,et al.  FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..

[45]  P. Mastrolia,et al.  Multiloop integrand reduction for dimensionally regulated amplitudes , 2013, 1307.5832.

[46]  J. Henn Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.

[47]  P. Mastrolia,et al.  Integrand reduction for two-loop scattering amplitudes through multivariate polynomial division , 2012, 1209.4319.

[48]  Gudrun Heinrich,et al.  Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..

[49]  S. Badger,et al.  Hepta-cuts of two-loop scattering amplitudes , 2012, 1202.2019.

[50]  D. Kosower,et al.  Maximal unitarity at two loops , 2011, 1108.1180.

[51]  Gudrun Heinrich,et al.  SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..

[52]  T. Riemann,et al.  Numerical evaluation of tensor Feynman integrals in Euclidean kinematics , 2010, 1010.1667.

[53]  J. Gluza,et al.  Towards a Basis for Planar Two-Loop Integrals , 2010, 1009.0472.

[54]  A. V. Smirnov,et al.  FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..

[55]  A. Smirnov,et al.  The Number of Master Integrals is Finite , 2010, 1004.4199.

[56]  C. Studerus,et al.  Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..

[57]  R. N. Lee,et al.  Space-time dimensionality D as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D , 2009, 0911.0252.

[58]  A. V. Smirnov,et al.  Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..

[59]  Gudrun Heinrich,et al.  Sector Decomposition , 2008, 0803.4177.

[60]  Z. Kunszt,et al.  Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.

[61]  Christian Bogner,et al.  Operating system: Unix , 1983 .

[62]  T. Riemann,et al.  AMBRE - a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals , 2007, Comput. Phys. Commun..

[63]  R. Pittau,et al.  Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.

[64]  M. Czakon Automatized analytic continuation of Mellin-Barnes integrals , 2005, Comput. Phys. Commun..

[65]  C. Anastasiou,et al.  Numerical evaluation of loop integrals , 2005, hep-ph/0511176.

[66]  A. Denner,et al.  Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.

[67]  Y. Schroder,et al.  High-precision epsilon expansions of single-mass-scale four-loop vacuum bubbles , 2005, hep-ph/0503209.

[68]  T. Riemann,et al.  Master integrals for massive two-loop Bhabha scattering in QED , 2004, hep-ph/0412164.

[69]  F. Cachazo,et al.  Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills , 2004, hep-th/0412103.

[70]  G. Heinrich,et al.  Analytical evaluation of dimensionally regularized massive on-shell double boxes , 2004, hep-ph/0406053.

[71]  G. Duplančić,et al.  Reduction method for dimensionally regulatedone-loop N-point Feynman integrals , 2003, hep-ph/0303184.

[72]  V. Smirnov Applied Asymptotic Expansions in Momenta and Masses , 2001 .

[73]  S. Laporta,et al.  HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.

[74]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000, hep-ph/0004013.

[75]  T. Gehrmann,et al.  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[76]  J. B. Tausk Non-planar massless two-loop Feynman diagrams with four on-shell legs , 1999, hep-ph/9909506.

[77]  V. Smirnov Analytical result for dimensionally regularized massless on shell double box , 1999, hep-ph/9905323.

[78]  D. Broadhurst,et al.  Massive 3-loop Feynman diagrams reducible to SC$^*$ primitives of algebras of the sixth root of unity , 1998, hep-th/9803091.

[79]  E. Remiddi Differential equations for Feynman graph amplitudes , 1997, Il Nuovo Cimento A.

[80]  O. Tarasov Generalized recurrence relations for two-loop propagator integrals with arbitrary masses , 1997, hep-ph/9703319.

[81]  Tarasov Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[82]  V. Smirnov ASYMPTOTIC EXPANSIONS IN MOMENTA AND MASSES AND CALCULATION OF FEYNMAN DIAGRAMS , 1994, hep-th/9412063.

[83]  J. B. Tausk,et al.  Two-loop self-energy diagrams with different masses and the momentum expansion , 1993 .

[84]  L. Dixon,et al.  Dimensionally regulated one-loop integrals , 1992, hep-ph/9212308.

[85]  A. I. Davydychev A simple formula for reducing Feynman diagrams to scalar integrals , 1991 .

[86]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[87]  J. Vermaseren,et al.  New algorithms for one-loop integrals , 1990 .

[88]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[89]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[90]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[91]  N. Usyukina On a representation for the three-point function , 1975 .

[92]  R. Feynman Space - time approach to quantum electrodynamics , 1949 .