Personalized Ranking of Search Results with Learned User Interest Hierarchies from Bookmarks

Web search engines are usually designed to serve all users, without considering the interests of individual users. Personalized web search incorporates an individual user's interests when deciding relevant results to return. We propose to learn a user profile, called a user interest hierarchy (UIH), from web pages that are of interest to the user. The user’s interest in web pages will be determined implicitly, without directly asking the user. Using the implicitly learned UIH, we study methods that (re)rank the results from a search engine. Experimental results indicate that our personalized ranking methods, when used with a popular search engine, can yield more relevant web pages for individual users.

[1]  Michael Bieber,et al.  A clickstream-based collaborative filtering personalization model: towards a better performance , 2004, WIDM '04.

[2]  Michalis Vazirgiannis,et al.  Web personalization integrating content semantics and navigational patterns , 2004, WIDM '04.

[3]  Ophir Frieder,et al.  Integrating structured data and text: a relational approach , 1997 .

[4]  Ricardo Baeza-Yates,et al.  Information Retrieval: Data Structures and Algorithms , 1992 .

[5]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[6]  Philip K. Chan,et al.  Identifying variable-length meaningful phrases with correlation functions , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[7]  Pedro M. Domingos,et al.  A machine learning approach to web personalization , 2002 .

[8]  W. Bruce Croft,et al.  I3R: A new approach to the design of document retrieval systems , 1987, J. Am. Soc. Inf. Sci..

[9]  W. Bruce Croft,et al.  I 3 R: a new approach to the design of document retrieval systems , 1987 .

[10]  Philip K. Chan,et al.  Learning implicit user interest hierarchy for context in personalization , 2008, IUI '03.

[11]  Ellen M. Voorhees,et al.  Implementing agglomerative hierarchic clustering algorithms for use in document retrieval , 1986, Inf. Process. Manag..

[12]  Katia P. Sycara,et al.  WebMate: a personal agent for browsing and searching , 1998, AGENTS '98.

[13]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[14]  R. K. Waldstein,et al.  Term relevance weights in on-line information retrieval , 1977, Inf. Process. Manag..

[15]  Farnoush Banaei Kashani,et al.  Efficient and Anonymous Web-Usage Mining for Web Personalization , 2003, INFORMS J. Comput..

[16]  Umeshwar Dayal,et al.  From User Access Patterns to Dynamic Hypertext Linking , 1996, Comput. Networks.

[17]  Rajeev Motwani,et al.  What can you do with a Web in your Pocket? , 1998, IEEE Data Eng. Bull..

[18]  Ingrid Zukerman,et al.  Predicting users' requests on the WWW , 1999 .

[19]  Philip K. Chan,et al.  A Non-Invasive Learning Approach to Building Web User Profiles , 1999 .

[20]  Taher H. Haveliwala Efficient Computation of PageRank , 1999 .

[21]  W. Bruce Croft,et al.  Experiments with query acquisition and use in document retrieval systems , 1989, SIGIR '90.

[22]  Padhraic Smyth,et al.  Visualization of navigation patterns on a Web site using model-based clustering , 2000, KDD '00.

[23]  Kristian J. Hammond,et al.  Mining navigation history for recommendation , 2000, IUI '00.

[24]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[25]  Pattie Maes,et al.  Footprints: History-Rich Web Browsing , 1997, RIAO.

[26]  Philip K. Chan,et al.  Implicit Indicators for Interesting Web Pages , 2005, WEBIST.

[27]  Israel Ben-Shaul,et al.  Automatically Organizing Bookmarks per Contents , 1996, Comput. Networks.

[28]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[29]  L. R. Rasmussen,et al.  In information retrieval: data structures and algorithms , 1992 .

[30]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[31]  Clement T. Yu,et al.  Personalized web search by mapping user queries to categories , 2002, CIKM '02.

[32]  Edward Y. Chang,et al.  PowerBookmarks: a system for personalizable Web information organization, sharing, and management , 1999, SIGMOD '99.

[33]  Jaideep Srivastava,et al.  Creating adaptive Web sites through usage-based clustering of URLs , 1999, Proceedings 1999 Workshop on Knowledge and Data Engineering Exchange (KDEX'99) (Cat. No.PR00453).

[34]  Ophir Frieder,et al.  Integrating Structured Data and Text: A Relational Approach , 1997, J. Am. Soc. Inf. Sci..

[35]  Krishna Bharat,et al.  When experts agree: using non-affiliated experts to rank popular topics , 2001, TOIS.