the expression of aryl hydrocarbon receptor-interacting protein (AIP)

[1]  Yunlin Wu,et al.  miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells , 2012, Medical Oncology.

[2]  M. Korbonits,et al.  Can the stability of variant aryl hydrocarbon receptor interacting protein (AIP) be a marker for pathogenicity in FIPA (familial isolated pituitary adenoma) , 2012 .

[3]  G. Milligan,et al.  Role of MicroRNAs 99b, 181a, and 181b in the Differentiation of Human Embryonic Stem Cells to Vascular Endothelial Cells , 2012, Stem cells.

[4]  M. Korbonits,et al.  The Immunophilin-Like Protein XAP2 Is a Negative Regulator of Estrogen Signaling through Interaction with Estrogen Receptor α , 2011, PloS one.

[5]  M. Korbonits,et al.  AIP and its interacting partners. , 2011, The Journal of endocrinology.

[6]  B. Scheithauer,et al.  MicroRNAs in the Human Pituitary , 2011, Endocrine pathology.

[7]  C. Bracken,et al.  Experimental strategies for microRNA target identification , 2011, Nucleic acids research.

[8]  M. Barbacid,et al.  Toll-like Receptor-4 (TLR4) Down-regulates MicroRNA-107, Increasing Macrophage Adhesion via Cyclin-dependent Kinase 6* , 2011, The Journal of Biological Chemistry.

[9]  M. Gadelha,et al.  Low Aryl Hydrocarbon Receptor-Interacting Protein Expression Is a Better Marker of Invasiveness in Somatotropinomas than Ki-67 and p53 , 2010, Neuroendocrinology.

[10]  R. Paschke,et al.  Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. , 2010, The Journal of clinical endocrinology and metabolism.

[11]  P. Igaz,et al.  Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. , 2010, The Journal of clinical endocrinology and metabolism.

[12]  M. Yoon,et al.  Discordant expression of miR-103/7 and pantothenate kinase host genes in mouse. , 2010, Molecular genetics and metabolism.

[13]  Maik Friedrich,et al.  p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins , 2010, Nucleic Acids Res..

[14]  M. Korbonits,et al.  Clinical, genetic and molecular characterization of patients with familial isolated pituitary adenomas (FIPA) , 2010, Trends in Endocrinology & Metabolism.

[15]  Y. Pekarsky,et al.  Is miR-29 an oncogene or tumor suppressor in CLL? , 2010, Oncotarget.

[16]  F. Ferrari,et al.  A MicroRNA Targeting Dicer for Metastasis Control , 2010, Cell.

[17]  U. Srirangalingam,et al.  Characterization of Aryl Hydrocarbon Receptor Interacting Protein (AIP) Mutations in Familial Isolated Pituitary Adenoma Families , 2010, Human mutation.

[18]  Ji Wan,et al.  Structure and activity of putative intronic miRNA promoters. , 2010, RNA.

[19]  Michael Hallek,et al.  miRNA deregulation by epigenetic silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. , 2009, Blood.

[20]  V. Esposito,et al.  Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications. , 2009, Endocrine-related cancer.

[21]  Carsten O. Daub,et al.  MiR-107 and MiR-185 Can Induce Cell Cycle Arrest in Human Non Small Cell Lung Cancer Cell Lines , 2009, PloS one.

[22]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[23]  E. Bonora,et al.  The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. , 2009, The Journal of clinical endocrinology and metabolism.

[24]  K. Lee,et al.  Epigenetic Silencing of MicroRNA miR-107 Regulates Cyclin-Dependent Kinase 6 Expression in Pancreatic Cancer , 2009, Pancreatology.

[25]  A. Lania,et al.  G-Protein and Signalling in Pituitary Tumours , 2009, Hormone Research in Paediatrics.

[26]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[27]  Julian R. E. Davis,et al.  The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. , 2008, The Journal of clinical endocrinology and metabolism.

[28]  Laura Pelletier,et al.  MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations , 2008, Hepatology.

[29]  C. Gomez-Sanchez,et al.  Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. , 2008, Endocrinology.

[30]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[31]  R. Stallings,et al.  MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells , 2007, Oncogene.

[32]  C. Croce,et al.  MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia , 2007, Oncogene.

[33]  George A Calin,et al.  Identification of differentially expressed microRNAs by microarray: A possible role for microRNA genes in pituitary adenomas , 2007, Journal of cellular physiology.

[34]  Martti T. Tammi,et al.  MicroTar: predicting microRNA targets from RNA duplexes , 2006, BMC Bioinformatics.

[35]  Stefano Volinia,et al.  MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  R. Paschke,et al.  Pituitary Adenoma Predisposition Caused by Germline Mutations in the AIP Gene , 2006, Science.

[37]  Arianna Bottoni,et al.  miR‐15a and miR‐16‐1 down‐regulation in pituitary adenomas , 2005, Journal of cellular physiology.

[38]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[39]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[40]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[41]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[42]  M. Korbonits,et al.  Ghrelin exerts a proliferative effect on a rat pituitary somatotroph cell line via the mitogen-activated protein kinase pathway. , 2002, European journal of endocrinology.

[43]  G. Perdew,et al.  Characterization of the phosphorylation status of the hepatitis B virus X-associated protein 2. , 2002, Archives of biochemistry and biophysics.

[44]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[45]  M. Conti,et al.  Relevant cAMP-specific phosphodiesterase isoforms in human pituitary : Effect of Gsα mutations , 2001 .

[46]  P. M. Voorhoeve,et al.  MicroRNAs: Oncogenes, tumor suppressors or master regulators of cancer heterogeneity? , 2010, Biochimica et biophysica acta.

[47]  S. Asa,et al.  The pathogenesis of pituitary tumors. , 2009, Annual review of pathology.

[48]  F. Saggioro,et al.  MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. , 2009, The Journal of clinical endocrinology and metabolism.

[49]  M. Korbonits,et al.  Macrophage migration inhibitory factor expression is increased in pituitary adenoma cell nuclei. , 2003, The Journal of endocrinology.

[50]  M. Losa,et al.  Journal of Clinical Endocrinology and Metabolism Printed in U.S.A. Copyright © 1998 by The Endocrine Society Constitutively Active Gs � Is Associated with an Increased Phosphodiesterase Activity in Human Growth Hormone-Secreting Adenomas* , 2022 .