Two-Dimensional Protein Arrays: De Novo Design And Applications

Two-Dimensional Protein Arrays: De Novo Design And Applications

[1]  Tamir Gonen,et al.  High-resolution structure determination by continuous rotation data collection in MicroED , 2014, Nature Methods.

[2]  K. Kirshenbaum,et al.  Clickity-click: highly functionalized peptoid oligomers generated by sequential conjugation reactions on solid-phase support. , 2006, Organic & biomolecular chemistry.

[3]  F. Baneyx,et al.  Selection and analysis of solid-binding peptides. , 2007, Current opinion in biotechnology.

[4]  D. Pum,et al.  S-layer proteins as basic building blocks in a biomolecular construction kit , 2000 .

[5]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[6]  K. Blennow,et al.  Aβ40 Oligomers Identified as a Potential Biomarker for the Diagnosis of Alzheimer's Disease , 2010, PloS one.

[7]  C. Fishwick,et al.  Structures of Helical β-Tapes and Twisted Ribbons: The Role of Side-Chain Interactions on Twist and Bend Behavior , 2003 .

[8]  P. Bradley,et al.  High-resolution structure prediction and the crystallographic phase problem , 2007, Nature.

[9]  Russell P. Goodman,et al.  Reconfigurable, braced, three-dimensional DNA nanostructures. , 2008, Nature nanotechnology.

[10]  Xiaohu Gao,et al.  Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. , 2010, Chemical Society reviews.

[11]  D. Pum,et al.  Prokaryotic Cell Wall Components: Structure and Biochemistry , 2010 .

[12]  M. Howarth,et al.  Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin , 2008, Nature Protocols.

[13]  K. Dill,et al.  Biomimetic nanostructures: creating a high-affinity zinc-binding site in a folded nonbiological polymer. , 2008, Journal of the American Chemical Society.

[14]  R. Zuckermann,et al.  A universal method for detection of amyloidogenic misfolded proteins. , 2011, Biochemistry.

[15]  C. Wennerås,et al.  Nepotism and sexism in peer-review , 1997, Nature.

[16]  S. Spitalnik,et al.  Construction of an agglutination tool: recombinant Fab fragments biotinylated in vitro. , 2009, New biotechnology.

[17]  Annelise E Barron,et al.  Peptoids: bio-inspired polymers as potential pharmaceuticals. , 2011, Current pharmaceutical design.

[18]  G. Schulz,et al.  Self-Assembly of Proteins into Designed Networks , 2003, Science.

[19]  Tamir Gonen,et al.  Overview of Electron Crystallography of Membrane Proteins: Crystallization and Screening Strategies Using Negative Stain Electron Microscopy , 2013, Current protocols in protein science.

[20]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[21]  C. Batt,et al.  Bionanofabrication of ordered nanoparticle arrays: Effect of particle properties and adsorption conditions , 2004 .

[22]  Martin D Hager,et al.  Functional soft materials from metallopolymers and metallosupramolecular polymers. , 2011, Nature materials.

[23]  R. Siegel,et al.  Chemically controlled self-assembly of protein nanorings. , 2006, Journal of the American Chemical Society.

[24]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[25]  W Seth Horne,et al.  Peptide and peptoid foldamers in medicinal chemistry , 2011, Expert opinion on drug discovery.

[26]  Melvin Manis,et al.  Shifting standards and stereotype-based judgments. , 1994 .

[27]  S. Stupp,et al.  Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers , 2001, Science.

[28]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[29]  S. Howorka Rationally engineering natural protein assemblies in nanobiotechnology. , 2011, Current opinion in biotechnology.

[30]  R. Naik,et al.  Biomimetic synthesis and patterning of silver nanoparticles , 2002, Nature materials.

[31]  Jonathan N. Jaworski,et al.  Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices. , 2010, Journal of the American Chemical Society.

[32]  R. Zuckermann,et al.  Assembly and molecular order of two-dimensional peptoid nanosheets through the oil–water interface , 2014, Proceedings of the National Academy of Sciences.

[33]  Derek N. Woolfson,et al.  More than Just Bare Scaffolds: Towards Multi-Component and Decorated Fibrous Biomaterials , 2010 .

[34]  David Baker,et al.  High-resolution comparative modeling with RosettaCM. , 2013, Structure.

[35]  Helena Gradišar,et al.  Self-assembled bionanostructures: proteins following the lead of DNA nanostructures , 2014, Journal of Nanobiotechnology.

[36]  P. Samorí,et al.  Blueprinting macromolecular electronics. , 2011, Nature chemistry.

[37]  Dietmar Pum,et al.  The application of bacterial S-layers in molecular nanotechnology , 1999 .

[38]  Dominik Rünzler,et al.  The three S‐layer‐like homology motifs of the S‐layer protein SbpA of Bacillus sphaericus CCM 2177 are not sufficient for binding to the pyruvylated secondary cell wall polymer , 2004, Molecular microbiology.

[39]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[40]  W. Baumeister,et al.  Three-dimensional structure of the surface protein of Desulfurococcus mobilis , 1987, Journal of bacteriology.

[41]  Helena Gradišar,et al.  New designed protein assemblies. , 2013, Current opinion in chemical biology.

[42]  E. Harmon-Jones,et al.  The regulation of explicit and implicit race bias: the role of motivations to respond without prejudice. , 2002, Journal of personality and social psychology.

[43]  Baoquan Ding,et al.  DNA‐Based Self‐Assembly for Functional Nanomaterials , 2013, Advanced materials.

[44]  V. Cody,et al.  Designing protein dimerizers: the importance of ligand conformational equilibria. , 2003, Journal of the American Chemical Society.

[45]  T J Beveridge,et al.  Bacterial S-layers. , 1999, Trends in microbiology.

[46]  F. Baneyx,et al.  Aqueous, protein-driven synthesis of transition metal-doped ZnS immuno-quantum dots. , 2011, ACS nano.

[47]  Keiko Munechika,et al.  Plasmon Line Widths of Single Silver Nanoprisms as a Function of Particle Size and Plasmon Peak Position , 2007 .

[48]  S. Howorka,et al.  The surface location of individual residues in a bacterial S-layer protein. , 2008, Journal of molecular biology.

[49]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[50]  G. Schulz,et al.  Designed Protein-Protein Association , 2008, Science.

[51]  W. Baumeister,et al.  The cell envelope of Thermoproteus tenax: three‐dimensional structure of the surface layer and its role in shape maintenance , 1987, The EMBO journal.

[52]  David Baker,et al.  Prediction of the structure of symmetrical protein assemblies , 2007, Proceedings of the National Academy of Sciences.

[53]  Greg L. Hura,et al.  Structure of a Designed Protein Cage that Self-Assembles into a Highly Porous Cube , 2014, Nature chemistry.

[54]  D. Pum,et al.  S‐Layers as a basic building block in a molecular construction kit , 2007, The FEBS journal.

[55]  Hao Yan,et al.  Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions. , 2007, Angewandte Chemie.

[56]  D. Pum,et al.  Anisotropic crystal growth of the S-layer of Bacillus sphaericus CCM 2177 at the air/water interface , 1995 .

[57]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[58]  A. Seifalian,et al.  Biological applications of quantum dots. , 2007, Biomaterials.

[59]  Keiko Munechika,et al.  Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. , 2007, Nano letters.

[60]  Dietmar Pum,et al.  Formation of a gold superlattice on an S-layer with square lattice symmetry , 1998 .

[61]  J. Sinclair,et al.  Generation of protein lattices by fusing proteins with matching rotational symmetry. , 2011, Nature nanotechnology.

[62]  Chengde Mao,et al.  Self-assembly of hexagonal DNA two-dimensional (2D) arrays. , 2005, Journal of the American Chemical Society.

[63]  J. Handelsman,et al.  NIH Director's Pioneer Awards: could the selection process be biased against women? , 2005, Journal of Women's Health.

[64]  U. Sleytr,et al.  The structure and binding behavior of the bacterial cell surface layer protein SbsC. , 2008, Structure.

[65]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[66]  Ryan A. Mesch,et al.  Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. , 2010, Nature materials.

[67]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[68]  Chun-Long Chen,et al.  Engineered biomimetic polymers as tunable agents for controlling CaCO3 mineralization. , 2011, Journal of the American Chemical Society.

[69]  U. Sleytr,et al.  Surface-accessible Residues in the Monomeric and Assembled Forms of a Bacterial Surface Layer Protein* , 2000, The Journal of Biological Chemistry.

[70]  Dietmar Pum,et al.  S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Pum,et al.  Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a. , 1986, Journal of ultrastructure and molecular structure research.

[72]  R. Zuckermann,et al.  Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers , 1994 .

[73]  Ronald T Raines,et al.  Self-assembly of synthetic collagen triple helices. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Y. Hayashizaki,et al.  Nanoscale elongating control of the self‐assembled protein filament with the cysteine‐introduced building blocks , 2009, Protein science : a publication of the Protein Society.

[75]  A. Cheng,et al.  Three-dimensional architecture of inorganic nanoarrays electrodeposited through a surface-layer protein mask. , 2008, Nano letters.

[76]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[77]  L. Pease,et al.  Gene splicing and mutagenesis by PCR-driven overlap extension , 2007, Nature Protocols.

[78]  P G Schultz,et al.  A general method for site-specific incorporation of unnatural amino acids into proteins. , 1989, Science.

[79]  Sarah A. Teichmann,et al.  3D Complex: A Structural Classification of Protein Complexes , 2006, PLoS Comput. Biol..

[80]  A. Barron,et al.  Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides , 2008, Proceedings of the National Academy of Sciences.

[81]  W. Stoeckenius,et al.  A MORPHOLOGICAL STUDY OF HALOBACTERIUM HALOBIUM AND ITS LYSIS IN MEDIA OF LOW SALT CONCENTRATION , 1967, The Journal of cell biology.

[82]  R. Steinpreis,et al.  The Impact of Gender on the Review of the Curricula Vitae of Job Applicants and Tenure Candidates: A National Empirical Study , 1999 .

[83]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[84]  K A Dill,et al.  Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[85]  R. Fairman,et al.  Design of heterotetrameric coiled coils: evidence for increased stabilization by Glu(-)-Lys(+) ion pair interactions. , 1996, Biochemistry.

[86]  N. Seeman,et al.  DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface , 2004 .

[87]  F. Baneyx,et al.  Single-pot biofabrication of zinc sulfide immuno-quantum dots. , 2010, Journal of the American Chemical Society.

[88]  N. Seeman,et al.  Paranemic crossover DNA: a generalized Holliday structure with applications in nanotechnology. , 2004, Journal of the American Chemical Society.

[89]  Duilio Cascio,et al.  Structure of a 16-nm Cage Designed by Using Protein Oligomers , 2012, Science.

[90]  R. Zuckermann,et al.  Control of Crystallization and Melting Behavior in Sequence Specific Polypeptoids , 2010 .

[91]  D. Pum,et al.  Surfaces functionalized with self-assembling S-layer fusion proteins for nanobiotechnological applications , 2008 .

[92]  James F. Matthaei,et al.  Self-assembled two-dimensional protein arrays in bionanotechnology: from S-layers to designed lattices. , 2014, Current opinion in biotechnology.

[93]  A. Hexemer,et al.  Self-assembly of "S-bilayers", a step toward expanding the dimensionality of S-layer assemblies. , 2013, ACS nano.

[94]  F. Baneyx,et al.  Biofabrication of ZnS:Mn luminescent nanocrystals using histidine, hexahistidine, and His-tagged proteins: a comparison study. , 2014, Biochemical engineering journal.

[95]  U. Sleytr,et al.  S-Layer Proteins , 2000, Journal of bacteriology.

[96]  Hao Yan,et al.  DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. , 2008, Angewandte Chemie.

[97]  Jian Zhang,et al.  Design and designability of protein-based assemblies. , 2014, Current opinion in structural biology.

[98]  Dietmar Pum,et al.  Characterization and use of crystalline bacterial cell surface layers , 2001 .

[99]  S. Danziger,et al.  Extraneous factors in judicial decisions , 2011, Proceedings of the National Academy of Sciences.

[100]  Younan Xia,et al.  Excitation enhancement of CdSe quantum dots by single metal nanoparticles , 2008 .

[101]  Samuel L. DeLuca,et al.  Practically Useful: What the Rosetta Protein Modeling Suite Can Do for You , 2010, Biochemistry.

[102]  Dietmar Pum,et al.  Reassembly of S-layer proteins , 2014, Nanotechnology.

[103]  David Baker,et al.  A de novo protein binding pair by computational design and directed evolution. , 2011, Molecular cell.

[104]  N. Seeman,et al.  An immobile nucleic acid junction constructed from oligonucleotides , 1983, Nature.

[105]  Kristin N. Parent,et al.  Metal-directed, chemically-tunable assembly of one-, two- and three-dimensional crystalline protein arrays , 2012, Nature chemistry.

[106]  Timothy A. Whitehead,et al.  Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin , 2011, Science.

[107]  D. Pum,et al.  S-layers as a tool kit for nanobiotechnological applications. , 2007, FEMS microbiology letters.

[108]  Michael J. Campolongo,et al.  Novel DNA materials and their applications , 2010, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[109]  G. Rödel,et al.  Production, Secretion, and Cell Surface Display of Recombinant Sporosarcina ureae S-Layer Fusion Proteins in Bacillus megaterium , 2011, Applied and Environmental Microbiology.

[110]  H. Luecke,et al.  X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane. , 2003, Annual review of biophysics and biomolecular structure.

[111]  H. Vanderstichele,et al.  Roadblocks for integration of novel biomarker concepts into clinical routine: the peptoid approach , 2014, Alzheimer's Research & Therapy.

[112]  Noah Linden,et al.  A de novo peptide hexamer with a mutable channel , 2011, Nature chemical biology.

[113]  U. Sleytr,et al.  Exploitation of S-layer anisotropy: pH-dependent nanolayer orientation for cellular micropatterning. , 2013, ACS nano.

[114]  M. Blaser,et al.  Molecular biology of S-layers. , 1997, FEMS microbiology reviews.

[115]  Travis L. Russ,et al.  An Occupational Hazard ? : The Influence of Sexual Orientation on Teacher Credibility and Perceived Student Learning , 2008 .

[116]  James F. Matthaei,et al.  A genetic approach for controlling the binding and orientation of proteins on nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[117]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[118]  J. Sinclair,et al.  Constructing arrays of proteins. , 2013, Current opinion in chemical biology.

[119]  Nathan L Vanderford Broadening PhD curricula , 2012, Nature Biotechnology.

[120]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[121]  F. Baneyx,et al.  Stability of S-layer proteins for electrochemical nanofabrication. , 2007, Colloids and surfaces. B, Biointerfaces.

[122]  A Paul Alivisatos,et al.  Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. , 2006, Nano letters.

[123]  Walter H. Moos,et al.  Comparison of the proteolytic susceptibilities of homologous L‐amino acid, D‐amino acid, and N‐substituted glycine peptide and peptoid oligomers , 1995 .

[124]  W. Stoeckenius,et al.  Structure of the purple membrane. , 1971, Nature: New biology.

[125]  Brian Kuhlman,et al.  Metal templated design of protein interfaces , 2009, Proceedings of the National Academy of Sciences.

[126]  Stephen Mann,et al.  Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. , 2009, Nature materials.

[127]  S. Howorka,et al.  SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly , 2012, Nature.

[128]  T. Beveridge,et al.  Surface layers of bacteria. , 1991, Microbiological reviews.

[129]  Hao Yan,et al.  Self-assembling a molecular pegboard. , 2005, Journal of the American Chemical Society.

[130]  T. Yeates,et al.  Principles for designing ordered protein assemblies. , 2012, Trends in cell biology.

[131]  J L Sussman,et al.  Protein Data Bank archives of three-dimensional macromolecular structures. , 1997, Methods in enzymology.

[132]  C. Bertozzi,et al.  Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics , 2010, Proceedings of the National Academy of Sciences.

[133]  M. Rolandi,et al.  Carbon-binding designer proteins that discriminate between sp2- and sp3-hybridized carbon surfaces. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[134]  C. Batt,et al.  Entropically driven self-assembly of Lysinibacillus sphaericus S-layer proteins analyzed under various environmental conditions. , 2010, Macromolecular bioscience.

[135]  F. Baneyx,et al.  Bacterial surface-layer proteins for electrochemical nanofabrication , 2007 .

[136]  U.B. Sleyter,et al.  Nanotechnology and biomimetics with 2-D protein crystals , 2003, IEEE Engineering in Medicine and Biology Magazine.

[137]  T. Koide Triple Helical Collagen-Like Peptides: Engineering and Applications in Matrix Biology , 2005, Connective tissue research.

[138]  David Baker,et al.  Accurate design of co-assembling multi-component protein nanomaterials , 2014, Nature.

[139]  E. Karsenti Self-organization in cell biology: a brief history , 2008, Nature Reviews Molecular Cell Biology.

[140]  C. Bertozzi,et al.  Direct observation of kinetic traps associated with structural transformations leading to multiple pathways of S-layer assembly , 2012, Proceedings of the National Academy of Sciences.

[141]  K. Kirshenbaum,et al.  Peptoid architectures: elaboration, actuation, and application. , 2008, Current opinion in chemical biology.

[142]  Hao Yan,et al.  DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. , 2006, Angewandte Chemie.

[143]  Mehmet Sarikaya,et al.  Electrochemical nanofabrication using crystalline protein masks. , 2005, Nano letters.

[144]  Norbert Hampp,et al.  Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. , 2000, Chemical reviews.

[145]  Stephen Mann,et al.  Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers , 1997, Nature.

[146]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[147]  David Baker,et al.  Modeling Symmetric Macromolecular Structures in Rosetta3 , 2011, PloS one.

[148]  U. Sleytr,et al.  Interaction of the Crystalline Bacterial Cell Surface Layer Protein SbsB and the Secondary Cell Wall Polymer of Geobacillus stearothermophilus PV72 Assessed by Real-Time Surface Plasmon Resonance Biosensor Technology , 2004, Journal of bacteriology.

[149]  Weili Shi,et al.  Gold nanoshells on polystyrene cores for control of surface plasmon resonance. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[150]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[151]  Jim Pfaendtner,et al.  A New Graduate-Level Seminar to Prepare Students for the Next Step in Their Careers. , 2015 .

[152]  F. Baneyx,et al.  Protein-Based Control of Silver Growth Habit Using Electrochemical Deposition , 2009 .

[153]  D. Pum,et al.  Atomistic structure of monomolecular surface layer self-assemblies: toward functionalized nanostructures. , 2011, ACS Nano.

[154]  F. Tezcan,et al.  Metal-directed protein self-assembly. , 2010, Accounts of chemical research.

[155]  K. H. Lau Peptoids for biomaterials science. , 2014, Biomaterials science.

[156]  Jennifer E. Padilla,et al.  Nanohedra: Using symmetry to design self assembling protein cages, layers, crystals, and filaments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[157]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[158]  Brian Kuhlman,et al.  Computational design of a symmetric homodimer using β-strand assembly , 2011, Proceedings of the National Academy of Sciences.

[159]  S. Whitelam,et al.  Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet. , 2011, Biopolymers.

[160]  R. Zuckermann,et al.  Determination of the persistence length of helical and non-helical polypeptoids in solution , 2012 .

[161]  K. Kirshenbaum,et al.  Peptoids on Steroids: Precise Multivalent Estradiol–Peptidomimetic Conjugates Generated via Azide–Alkyne [3+2] Cycloaddition Reactions , 2007 .

[162]  Dietmar Pum,et al.  S-layer Ultrafiltration Membranes: A New Support for Stabilizing Functionalized Lipid Membranes , 2001 .

[163]  B. White,et al.  Chemically controlled protein assembly: techniques and applications. , 2010, Chemical reviews.

[164]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[165]  J. Brodin,et al.  In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds. , 2013, Journal of the American Chemical Society.

[166]  Derek N Woolfson,et al.  Peptide-based fibrous biomaterials: Some things old, new and borrowed. , 2006, Current opinion in chemical biology.

[167]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[168]  Derek N. Woolfson,et al.  Engineering Increased Stability into Self‐Assembled Protein Fibers , 2006 .

[169]  U. Sleytr,et al.  S-layer fusion proteins — construction principles and applications , 2011, Current opinion in biotechnology.

[170]  Randi C. Martin,et al.  Gender and letters of recommendation for academia: agentic and communal differences. , 2009, The Journal of applied psychology.

[171]  J. Reif,et al.  Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes , 2000 .

[172]  F. Baneyx,et al.  Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli , 1997, Nature Biotechnology.

[173]  W. Dichtel,et al.  Rationally Synthesized Two-Dimensional Polymers , 2013 .

[174]  Christopher M. MacDermaid,et al.  Computational design of a protein crystal , 2012, Proceedings of the National Academy of Sciences.

[175]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[176]  D. Pum,et al.  Crystalline Bacterial Cell Surface Layers , 1988, Springer Berlin Heidelberg.

[177]  D. Woolfson The design of coiled-coil structures and assemblies. , 2005, Advances in protein chemistry.

[178]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[179]  Tanja Kortemme,et al.  Computer-aided design of functional protein interactions. , 2009, Nature chemical biology.

[180]  N. Linden,et al.  Self-Assembling Cages from Coiled-Coil Peptide Modules , 2013, Science.

[181]  Byoung-Chul Lee,et al.  Folding a nonbiological polymer into a compact multihelical structure. , 2005, Journal of the American Chemical Society.

[182]  F. Baneyx,et al.  A cleavable silica‐binding affinity tag for rapid and inexpensive protein purification , 2014, Biotechnology and bioengineering.

[183]  D. Baker,et al.  Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy , 2012, Science.

[184]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[185]  Hao Yan,et al.  Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. , 2005, Nano letters.

[186]  Francisco J Asturias,et al.  Structure and flexibility of nanoscale protein cages designed by symmetric self-assembly. , 2013, Journal of the American Chemical Society.

[187]  B. Kuhlman,et al.  Computational design of affinity and specificity at protein-protein interfaces. , 2009, Current opinion in structural biology.

[188]  Alessandro Senes,et al.  Using alpha-helical coiled-coils to design nanostructured metalloporphyrin arrays. , 2008, Journal of the American Chemical Society.

[189]  D. Pum,et al.  S-layers as patterning elements for application in nanobiotechnology. , 2005, Journal of nanoscience and nanotechnology.

[190]  Margit Sára,et al.  Surface modification of an ultrafiltration membrane with crystalline structure and studies on interactions with selected protein molecules , 1995 .

[191]  Neil P King,et al.  Practical approaches to designing novel protein assemblies. , 2013, Current opinion in structural biology.

[192]  A J Olson,et al.  Structural symmetry and protein function. , 2000, Annual review of biophysics and biomolecular structure.

[193]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[194]  R. Zuckermann,et al.  Peptoid polymers: a highly designable bioinspired material. , 2013, ACS nano.