Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study Over Huntington Wildlife Forest in the Adirondack Park

In response to the need for a better understanding of biosphere-atmosphere interactions as well as carbon cycles, there is a high demand for monitoring key forest parameters such as biomass and carbon stock. These monitoring tasks provide insight into relevant biogeochemical processes as well as anthropogenic impacts on the environment. Recent advances in remote sensing techniques such as Light Detection and Ranging (LiDAR) enable scientists to nondestructively identify structural and biophysical characteristics of forests. This study quantified forest biomass and carbon stock at the plot level from small-footprint full-waveform LiDAR data collected over a montane mixed forest in September 2011, using seven modeling methods: ordinary least squares, generalized additive model, Cubist, bagging, random forest, boosted regression trees, and support vector regression (SVR). Results showed that higher percentiles of canopy height and intensity made significant contributions to the predictions, while other explanatory variables related to canopy geometric volume, structure, and canopy coverage were generally not as important. Boosted regression trees provided the highest accuracy for model calibration, whereas SVR and ordinary least squares performed slightly better than the other models in model validation. In this study, the simple ordinary least squares approach performed just as well as any advanced machine learning method.

[1]  Yong Pang,et al.  Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .

[2]  Pavel Propastin,et al.  Large-scale mapping of aboveground biomass of tropical rainforest in Sulawesi, Indonesia, using Landsat ETM+ and MODIS data , 2013 .

[3]  A. Brenning,et al.  Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. , 2010 .

[4]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[5]  B. Velázquez-Martíb,et al.  ESTIMATION OF WOOD VOLUME AND HEIGHT OF OLIVE TREE PLANTATIONS USING AIRBORNE DISCRETE-RETURN LIDAR DATA , 2015 .

[6]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[7]  Guoqing Sun,et al.  Evaluating Prospects for Improved Forest Parameter Retrieval From Satellite LiDAR Using a Physically-Based Radiative Transfer Model , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[9]  Uwe Soergel,et al.  A Marked Point Process for Modeling Lidar Waveforms , 2010, IEEE Transactions on Image Processing.

[10]  Mark O. Kimberley,et al.  Airborne scanning LiDAR in a double sampling forest carbon inventory , 2012 .

[11]  Shaban Shataeea,et al.  Plot-level Forest Volume Estimation Using Airborne Laser Scanner and TM Data, Comparison of Boosting and Random Forest Tree Regression Algorithms , 2011 .

[12]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[13]  Barbara Koch,et al.  Exploring full-waveform LiDAR parameters for tree species classification , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[14]  Sreerama K. Murthy,et al.  Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey , 1998, Data Mining and Knowledge Discovery.

[15]  Lindi J. Quackenbush,et al.  Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data , 2012 .

[16]  K. Ranson,et al.  Predicting lidar measured forest vertical structure from multi-angle spectral data , 2006 .

[17]  Borja Velázquez-Martí,et al.  Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data , 2014 .

[18]  L. Marklund,et al.  Global assessment of growing stock, biomass and carbon stock. , 2006 .

[19]  D. Gianelle,et al.  Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy) , 2008 .

[20]  Frédéric Bretar,et al.  Full-waveform topographic lidar : State-of-the-art , 2009 .

[21]  Jeffrey H. Gove,et al.  Spatial residual analysis of six modeling techniques , 2005 .

[22]  Oleg Antropov,et al.  Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part II: Above Ground Biomass Estimation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  K. Jon Ranson,et al.  Imaging radar for ecosystem studies , 1995 .

[24]  J. Pereira,et al.  Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest , 2012 .

[25]  Guoqing Sun,et al.  Forest biomass mapping from lidar and radar synergies , 2011 .

[26]  Patrick Johnson,et al.  Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests , 2011, Annals of Forest Science.

[27]  K. Ioki,et al.  Estimating stand volume in broad-leaved forest using discrete-return LiDAR: plot-based approach , 2009, Landscape and Ecological Engineering.

[28]  Simon J. Pittman,et al.  Using Lidar Bathymetry and Boosted Regression Trees to Predict the Diversity and Abundance of Fish and Corals , 2009 .

[29]  Hans-Gerd Maas,et al.  Automatic forest inventory parameter determination from terrestrial laser scanner data , 2008 .

[30]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Maxim Neumann,et al.  Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[33]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[34]  Michele Dalponte,et al.  The role of ground reference data collection in the prediction of stem volume with LiDAR data in mountain areas , 2011 .

[35]  Randolph H. Wynne,et al.  Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data , 2005 .

[36]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[37]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[38]  Jungho Im,et al.  A Volumetric Approach to Population Estimation Using Lidar Remote Sensing , 2011 .

[39]  Jeffrey H. Gove,et al.  Spatial Assessment of Model Errors from Four Regression Techniques , 2005 .

[40]  Gang Chen,et al.  Article in Press G Model International Journal of Applied Earth Observation and Geoinformation a Geobia Framework to Estimate Forest Parameters from Lidar Transects, Quickbird Imagery and Machine Learning: a Case Study in Quebec, Canada , 2022 .

[41]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[42]  P. Sterzai,et al.  Radiometric correction in laser scanning , 2006 .

[43]  Christopher Potter,et al.  Patterns of Aboveground Biomass Regeneration in Post-Fire Coastal Scrub Communities , 2012 .

[44]  Gregory P. Asner,et al.  Tropical forest carbon assessment: integrating satellite and airborne mapping approaches , 2009 .

[45]  S. Goetz,et al.  Importance of biomass in the global carbon cycle , 2009 .

[46]  Jeffrey T. Walton Subpixel urban land cover estimation: comparing cubist, random forests, and support vector regression , 2008 .

[47]  Richard A. Birdsey,et al.  Comprehensive database of diameter-based biomass regressions for North American tree species , 2004 .

[48]  P. Defourny,et al.  Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery , 2006 .

[49]  Klaus Scipal,et al.  The science and measurement concepts underlying the BIOMASS mission , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[50]  Jungho Im,et al.  A Fusion Approach for Tree Crown Delineation from Lidar Data , 2012 .

[51]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Richard G. Oderwald,et al.  The effects of fixed-area plot width on forest canopy height simulation , 1998 .

[53]  D. Roberts,et al.  Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors , 2011 .

[54]  B. Muys,et al.  Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests , 2010 .

[55]  F. Hall,et al.  Importance of structure and its measurement in quantifying function of forest ecosystems , 2010 .

[56]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[57]  F. Breidt,et al.  Model-Assisted Estimation of Forest Resources With Generalized Additive Models , 2007 .

[58]  Jungho Im,et al.  Characterization of Forest Crops with a Range of Nutrient and Water Treatments Using AISA Hyperspectral Imagery , 2012 .

[59]  Alan H. Strahler,et al.  Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing , 2009 .

[60]  Haipeng Wang,et al.  Accuracy of the $K$-Distribution Regression Model for Forest Biomass Estimation by High-Resolution Polarimetric SAR: Comparison of Model Estimation and Field Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[61]  John A. Scrivani,et al.  Lidar-based Mapping of Forest Volume and Biomass by Taxonomic Group Using Structurally Homogenous Segments , 2008 .

[62]  Carlos Pacheco Marques,et al.  Carbon Stock Assessment at a Regional Level, on Pure and Mixed Stands, Based on Inventory Data: A Case Study , 2011 .

[63]  C. Gleason,et al.  A Review of Remote Sensing of Forest Biomass and Biofuel: Options for Small-Area Applications , 2011 .

[64]  T. Gobakken,et al.  Light detection and ranging-based measures of mixed hardwood forest structure. , 2010 .

[65]  Sang Jin Lee,et al.  The extraction of forest CO2 storage capacity using high-resolution airborne lidar data , 2013 .

[66]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[67]  Francesca Bovolo,et al.  Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[68]  John R. Jensen,et al.  Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing , 2012, Remote. Sens..

[69]  K. O. Niemann,et al.  Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass , 2011 .

[70]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[71]  Jungho Im,et al.  Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments , 2009 .

[72]  Mahmod Reza Sahebi,et al.  Biomass Estimation of a Temperate Deciduous Forest Using Wavelet Analysis , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[73]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[74]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[75]  Jungho Im,et al.  Support vector machines in remote sensing: A review , 2011 .

[76]  Richard A. Fournier,et al.  An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR , 2011, Environ. Model. Softw..

[77]  Patrick Johnson,et al.  A low-frequency radar experiment for measuring vegetation biomass , 1998, IEEE Trans. Geosci. Remote. Sens..

[78]  R. Dubayah,et al.  Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest , 2002 .

[79]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[80]  Yong Q. Tian,et al.  Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data , 2007 .

[81]  Xiaohuan Xi,et al.  Forest Characteristics and Effects on LiDAR Waveforms Modeling and Simulation , 2008 .

[82]  Valerie Ussyshkin,et al.  Airborne Lidar: Advances in Discrete Return Technology for 3D Vegetation Mapping , 2011, Remote. Sens..

[83]  T. Tokola,et al.  Integration of airborne LiDAR, satellite imagery, and field measurements using a two-phase sampling method for forest biomass estimation in tropical forests , 2010 .

[84]  W. Cohen,et al.  Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery , 1992 .

[85]  J. Im,et al.  Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest , 2013 .

[86]  Richard A. Fournier,et al.  Spatially Explicit Large Area Biomass Estimation: Three Approaches Using Forest Inventory and Remotely Sensed Imagery in a GIS , 2008, Sensors.

[87]  Gretchen G. Moisen,et al.  Comparing five modelling techniques for predicting forest characteristics , 2002 .

[88]  Wenzhong Shi,et al.  Remote Sensing Image Fusion Using Multiscale Mapped LS-SVM , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[89]  Janet E. Nichol,et al.  Forest Biomass Estimation Using Texture Measurements of High-Resolution Dual-Polarization C-Band SAR Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[90]  Sandra Englhart,et al.  Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use , 2011 .