The effect of domain modeling on efficiency of planning: Lessons from the Nomystery domain

Nomystery is a simple logistic planning domain proposed for the International Planning Competition. The task is to plan loading, driving, and unloading actions for a single truck with unlimited load capacity but with limited fuel to transport packages between various locations. In this paper we show how different modeling techniques influence efficiency of planning for the Nomystery domain. In particular, we compare factored and structured representations of states enhanced with heuristics and control knowledge. We use the Picat planner module that exploits tabling to memorize visited states and that uses iterative deepening or branch-and-bound to search for optimal plans.

[1]  Agostino Dovier,et al.  On modeling planning problems in tabled logic programming , 2015, PPDP.

[2]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[3]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[4]  Agostino Dovier,et al.  Planning as tabled logic programming , 2015, Theory and Practice of Logic Programming.

[5]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[6]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[7]  Roman Barták,et al.  Searching for Sequential Plans Using Tabled Logic Programming , 2015, RCRA@AI*IA.

[8]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[9]  Jonas Kvarnström,et al.  TALplanner in the Third International Planning Competition: Extensions and Control Rules , 2003, J. Artif. Intell. Res..

[10]  Ailsa H. Land,et al.  An Automatic Method of Solving Discrete Programming Problems , 1960 .

[11]  Toni Mancini,et al.  Experimental evaluation of algorithms for solving problems with combinatorial explosion , 2016, AI Commun..

[12]  Dana S. Nau,et al.  SHOP2: An HTN Planning System , 2003, J. Artif. Intell. Res..

[13]  Neng-Fa Zhou,et al.  Combinatorial Search With Picat , 2014, ArXiv.

[14]  Gopal Gupta,et al.  Simplifying dynamic programming via mode-directed tabling , 2008 .

[15]  Agostino Dovier,et al.  A Tabled Prolog Program for Solving Sokoban , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[16]  Ian Horrocks,et al.  Combinations of Modal Logics , 2002, Artificial Intelligence Review.

[17]  Roman Barták,et al.  Using Tabled Logic Programming to Solve the Petrobras Planning Problem , 2014, Theory and Practice of Logic Programming.

[18]  Peter Ucko Some noteworthy events of the 1998/99 academic year , 1998 .

[19]  Michael Gelfond,et al.  Action Languages , 1998, Electron. Trans. Artif. Intell..

[20]  Gopal Gupta,et al.  Simplifying dynamic programming via mode‐directed tabling , 2008, Softw. Pract. Exp..

[21]  Jörg Hoffmann,et al.  Improving Local Search for Resource-Constrained Planning , 2010, SOCS.

[22]  Neng-Fa Zhou,et al.  Linear tabling strategies and optimizations , 2007, Theory and Practice of Logic Programming.

[23]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[24]  Patrik Haslum,et al.  Domain Knowledge in Planning : Representation and Use , 2003 .

[25]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[26]  Maria Fox,et al.  The Detection and Exploitation of Symmetry in Planning Problems , 1999, IJCAI.

[27]  E. Dahlman,et al.  A Critical Assessment of Benchmark Comparison in Planning , 2002, J. Artif. Intell. Res..

[28]  V. S. Costa,et al.  Theory and Practice of Logic Programming , 2010 .

[29]  S. Hainsworth,et al.  A CRITICAL ASSESSMENT , 2014 .

[30]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[31]  Lukás Chrpa,et al.  On the effective configuration of planning domain models , 2015 .