Multiple-objective heuristics for scheduling unrelated parallel machines

This research proposes two heuristics and a Genetic Algorithm (GA) to find non-dominated solutions to multiple-objective unrelated parallel machine scheduling problems. Three criteria are of interest, namely: makespan, total weighted completion time, and total weighted tardiness. Each heuristic seeks to simultaneously minimize a pair of these criteria; the GA seeks to simultaneously minimize all three. The computational results show that the proposed heuristics are computationally efficient and provide solutions of reasonable quality. The proposed GA outperforms other algorithms in terms of the number of non-dominated solutions and the quality of its solutions.

[1]  Éva Tardos,et al.  Scheduling unrelated machines with costs , 1993, SODA '93.

[2]  Hisao Ishibuchi,et al.  How to Choose Solutions for Local Search in Multiobjective Combinatorial Memetic Algorithms , 2010, PPSN.

[3]  Edward G. Coffman,et al.  Algorithms minimizing mean flow time: schedule-length properties , 1976, Acta Informatica.

[4]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[5]  C. N. Potts,et al.  Analysis of a linear programming heuristic for scheduling unrelated parallel machines , 1985, Discret. Appl. Math..

[6]  Ching-Jong Liao,et al.  Makespan minimization subject to flowtime optimality on identical parallel machines , 2004, Comput. Oper. Res..

[7]  John W. Fowler,et al.  Quantitative Comparison of Approximate Solution Sets for Bi-criteria Optimization Problems , 2003, Decis. Sci..

[8]  Evripidis Bampis,et al.  A FPTAS for Approximating the Unrelated Parallel Machines Scheduling Problem with Costs , 2001, ESA.

[9]  John W. Fowler,et al.  A multi-criteria approach for scheduling semiconductor wafer fabrication facilities , 2008, J. Sched..

[10]  Chris N. Potts,et al.  A decomposition algorithm for the single machine total tardiness problem , 1982, Oper. Res. Lett..

[11]  Pei-Chann Chang,et al.  A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem , 2006, ICNC.

[12]  Michael Pinedo,et al.  On the Minimization of the Makespan Subject to Flowtime Optimality , 1993, Oper. Res..

[13]  Pei-Chann Chang,et al.  Two-phase sub population genetic algorithm for parallel machine-scheduling problem , 2005, Expert Syst. Appl..

[14]  Michele E. Pfund,et al.  Robust scaling parameters for composite dispatching rules , 2010 .

[15]  Klaus Jansen,et al.  Improved approximation schemes for scheduling unrelated parallel machines , 1999, STOC '99.

[16]  Chris N. Potts,et al.  Heuristics for scheduling unrelated parallel machines , 1991, Comput. Oper. Res..

[17]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[18]  Alex J. Ruiz-Torres,et al.  Using the FDH formulation of DEA to evaluate a multi-criteria problem in parallel machine scheduling , 2004, Comput. Ind. Eng..

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  Jatinder N. D. Gupta,et al.  Minimizing makespan subject to minimum total flow-time on identical parallel machines , 2000, Eur. J. Oper. Res..

[21]  John W. Fowler,et al.  A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines , 2003, Comput. Oper. Res..

[22]  Jatinder N. D. Gupta,et al.  Minimizing makespan subject to minimum flowtime on two identical parallel machines , 2001, Comput. Oper. Res..

[23]  C. Rajendran,et al.  A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs , 2006 .

[24]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[25]  Ari P. J. Vepsalainen Priority rules for job shops with weighted tardiness costs , 1987 .

[26]  Dipak Chaudhuri,et al.  Bicriteria scheduling problem for unrelated parallel machines , 1996 .

[27]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[28]  Taïcir Loukil,et al.  Solving multi-objective production scheduling problems using metaheuristics , 2005, Eur. J. Oper. Res..

[29]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[30]  Jatinder N. D. Gupta,et al.  Bicriteria optimisation of the makespan and mean flowtime on two identical parallel machines , 2000, J. Oper. Res. Soc..

[31]  Jatinder N. D. Gupta,et al.  Generating efficient schedules for identical parallel machines involving flow-time and tardy jobs , 2005, Eur. J. Oper. Res..

[32]  Jiaquan Gao,et al.  A novel artificial immune system for solving multiobjective scheduling problems subject to special process constraint , 2010, Comput. Ind. Eng..

[33]  Tadahiko MURATA,et al.  Positive and negative combination effects of crossover and mutation operators in sequencing problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[34]  R. Barton,et al.  Simulated annealing heuristics for the average flow-time and the number of tardy jobs bi-criteria identical parallel machine problem , 1997 .

[35]  John W. Fowler,et al.  Heuristics for minimizing regular performance measures in unrelated parallel machine scheduling problems , 2011, Comput. Oper. Res..

[36]  Jiaquan Gao,et al.  A new parallel genetic algorithm for solving multiobjective scheduling problems subjected to special process constraint , 2009 .

[37]  Mitsuo Gen,et al.  Minmax earliness/tardiness scheduling in identical parallel machine system using genetic algorithms , 1995 .

[38]  Evripidis Bampis,et al.  On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems , 2003, Theor. Comput. Sci..

[39]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[40]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[41]  Dong Cao,et al.  Parallel machine selection and job scheduling to minimize machine cost and job tardiness , 2005, Comput. Oper. Res..

[42]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..