Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation

The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.

[1]  B. A. Wills,et al.  Wills' Mineral Processing Technology , 2005 .

[2]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[3]  Sarvesh Kumar A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media , 2012 .

[4]  B. Rivière,et al.  A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media , 2002 .

[5]  Alfio Quarteroni,et al.  Analysis of a finite volume element method for the Stokes problem , 2011, Numerische Mathematik.

[6]  Sandeep Saha,et al.  Low Reynolds number suspension gravity currents , 2013, The European physical journal. E, Soft matter.

[7]  Danping Yang,et al.  An upwind finite‐volume element scheme and its maximum‐principle‐preserving property for nonlinear convection–diffusion problem , 2008 .

[8]  Ingmar Nopens,et al.  A consistent modelling methodology for secondary settling tanks: a reliable numerical method. , 2013, Water science and technology : a journal of the International Association on Water Pollution Research.

[9]  Riccardo Sacco,et al.  A Conservative and Monotone Mixed-Hybridized Finite Element Approximation of Transport Problems in Heterogeneous Domains , 2010 .

[10]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[11]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[12]  Xiu Ye,et al.  A Discontinuous Finite Volume Method for the Stokes Problems , 2006, SIAM J. Numer. Anal..

[13]  Alberto Guardone,et al.  Finite element/volume solution to axisymmetric conservation laws , 2007, J. Comput. Phys..

[14]  M. Ungarish,et al.  An Introduction to Gravity Currents and Intrusions , 2009 .

[15]  Luca Bonaventura,et al.  Consistency with continuity in conservative advection schemes for free‐surface models , 2002 .

[16]  R. Jackson,et al.  The Dynamics of Fluidized Particles , 2000 .

[17]  Olivier Pouliquen,et al.  Granular Media: Granular gases , 2013 .

[18]  John Hinch,et al.  Fluctuations and Instability in Sedimentation , 2011 .

[19]  Sarvesh Kumar On the Approximation of incompressible miscible Displacement Problems in porous Media by mixed and Standard finite Volume element Methods , 2013, Int. J. Model. Simul. Sci. Comput..

[20]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[21]  Raimund Bürger,et al.  A Stabilized Finite Volume Element Formulation for Sedimentation-Consolidation Processes , 2012, SIAM J. Sci. Comput..

[22]  G. J. Kynch A theory of sedimentation , 1952 .

[23]  Raimund Bürger,et al.  Model equations for gravitational sedimentation-consolidation processes , 2000 .

[24]  Ricardo Ruiz-Baier,et al.  Numerical solution of a multidimensional sedimentation problem using finite volume-element methods , 2015 .

[25]  Ricardo Ruiz-Baier,et al.  Equal Order Discontinuous Finite Volume Element Methods for the Stokes Problem , 2015, J. Sci. Comput..

[26]  Olivier Pouliquen,et al.  Granular Media: Between Fluid and Solid , 2013 .

[27]  Xiu Ye,et al.  A New Discontinuous Finite Volume Method for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[28]  C. Schär,et al.  A Synchronous and Iterative Flux-Correction Formalism for Coupled Transport Equations , 1996 .

[29]  Richard E. Ewing,et al.  Efficient Time-Stepping Methods for Miscible Displacement Problems in Porous Media , 1982 .

[30]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[31]  Raytcho D. Lazarov,et al.  A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..

[32]  Mi Ray Ohm,et al.  Error estimates for discontinuous Galerkin method for nonlinear parabolic equations , 2006 .

[33]  Qing Yang,et al.  A discontinuous mixed covolume method for elliptic problems , 2011, J. Comput. Appl. Math..

[34]  Chunjia Bi,et al.  A discontinuous finite volume element method for second‐order elliptic problems , 2012 .

[35]  Zhen Dong Luo,et al.  A Stabilized Crank–Nicolson Mixed Finite Volume Element Formulation for the Non-stationary Incompressible Boussinesq Equations , 2016, J. Sci. Comput..

[36]  José Luiz Boldrini,et al.  The initial value problem for a generalized Boussinesq model , 1999 .

[37]  Raimund Bürger,et al.  Convexity-preserving flux identification for scalar conservation laws modelling sedimentation , 2013 .

[38]  YE XIU UNIFIED ANALYSIS OF FINITE VOLUME METHODS FOR THE STOKES EQUATIONS∗ , 2010 .

[39]  Yinnian He,et al.  Multiscale enrichment of a finite volume element method for the stationary Navier–Stokes problem , 2013, Int. J. Comput. Math..

[40]  B. Mercier,et al.  Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .

[41]  Jeffrey F. Morris,et al.  A Physical Introduction to Suspension Dynamics: Preface , 2011 .

[42]  Amiya K. Pani,et al.  Discontinuous Galerkin finite volume element methods for second‐order linear elliptic problems , 2009 .

[43]  Ivan Lunati,et al.  Mixed finite element -- primal finite volume element discretization of multicontinuum models , 2015 .

[44]  James L. Barnard,et al.  Secondary settling tanks : theory, modelling, design and operation , 1997 .

[45]  Li Ronghua,et al.  Generalized difference methods for a nonlinear Dirichlet problem , 1987 .

[46]  Thirupathi Gudi,et al.  hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems , 2008, Numerische Mathematik.

[47]  Zhangxin Chen,et al.  A new stabilized finite volume method for the stationary Stokes equations , 2009, Adv. Comput. Math..

[48]  Ricardo Ruiz-Baier,et al.  Stabilized mixed approximation of axisymmetric Brinkman flows , 2015 .

[49]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[50]  A. E. BOYCOTT,et al.  Sedimentation of Blood Corpuscles , 1920, Nature.

[51]  Panagiotis Chatzipantelidis,et al.  A Finite Volume Element Method for a Nonlinear Parabolic Problem , 2013 .

[52]  Yuliya Gorb,et al.  A flux-corrected transport algorithm for handling the close-packing limit in dense suspensions , 2012, J. Comput. Appl. Math..

[53]  So-Hsiang Chou,et al.  Analysis and convergence of a covolume method for the generalized Stokes problem , 1997, Math. Comput..

[54]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..