Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation
暂无分享,去创建一个
[1] B. A. Wills,et al. Wills' Mineral Processing Technology , 2005 .
[2] Zhiqiang Cai,et al. On the finite volume element method , 1990 .
[3] Sarvesh Kumar. A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media , 2012 .
[4] B. Rivière,et al. A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media , 2002 .
[5] Alfio Quarteroni,et al. Analysis of a finite volume element method for the Stokes problem , 2011, Numerische Mathematik.
[6] Sandeep Saha,et al. Low Reynolds number suspension gravity currents , 2013, The European physical journal. E, Soft matter.
[7] Danping Yang,et al. An upwind finite‐volume element scheme and its maximum‐principle‐preserving property for nonlinear convection–diffusion problem , 2008 .
[8] Ingmar Nopens,et al. A consistent modelling methodology for secondary settling tanks: a reliable numerical method. , 2013, Water science and technology : a journal of the International Association on Water Pollution Research.
[9] Riccardo Sacco,et al. A Conservative and Monotone Mixed-Hybridized Finite Element Approximation of Transport Problems in Heterogeneous Domains , 2010 .
[10] Shian‐Jiann Lin,et al. Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .
[11] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[12] Xiu Ye,et al. A Discontinuous Finite Volume Method for the Stokes Problems , 2006, SIAM J. Numer. Anal..
[13] Alberto Guardone,et al. Finite element/volume solution to axisymmetric conservation laws , 2007, J. Comput. Phys..
[14] M. Ungarish,et al. An Introduction to Gravity Currents and Intrusions , 2009 .
[15] Luca Bonaventura,et al. Consistency with continuity in conservative advection schemes for free‐surface models , 2002 .
[16] R. Jackson,et al. The Dynamics of Fluidized Particles , 2000 .
[17] Olivier Pouliquen,et al. Granular Media: Granular gases , 2013 .
[18] John Hinch,et al. Fluctuations and Instability in Sedimentation , 2011 .
[19] Sarvesh Kumar. On the Approximation of incompressible miscible Displacement Problems in porous Media by mixed and Standard finite Volume element Methods , 2013, Int. J. Model. Simul. Sci. Comput..
[20] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[21] Raimund Bürger,et al. A Stabilized Finite Volume Element Formulation for Sedimentation-Consolidation Processes , 2012, SIAM J. Sci. Comput..
[22] G. J. Kynch. A theory of sedimentation , 1952 .
[23] Raimund Bürger,et al. Model equations for gravitational sedimentation-consolidation processes , 2000 .
[24] Ricardo Ruiz-Baier,et al. Numerical solution of a multidimensional sedimentation problem using finite volume-element methods , 2015 .
[25] Ricardo Ruiz-Baier,et al. Equal Order Discontinuous Finite Volume Element Methods for the Stokes Problem , 2015, J. Sci. Comput..
[26] Olivier Pouliquen,et al. Granular Media: Between Fluid and Solid , 2013 .
[27] Xiu Ye,et al. A New Discontinuous Finite Volume Method for Elliptic Problems , 2004, SIAM J. Numer. Anal..
[28] C. Schär,et al. A Synchronous and Iterative Flux-Correction Formalism for Coupled Transport Equations , 1996 .
[29] Richard E. Ewing,et al. Efficient Time-Stepping Methods for Miscible Displacement Problems in Porous Media , 1982 .
[30] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[31] Raytcho D. Lazarov,et al. A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..
[32] Mi Ray Ohm,et al. Error estimates for discontinuous Galerkin method for nonlinear parabolic equations , 2006 .
[33] Qing Yang,et al. A discontinuous mixed covolume method for elliptic problems , 2011, J. Comput. Appl. Math..
[34] Chunjia Bi,et al. A discontinuous finite volume element method for second‐order elliptic problems , 2012 .
[35] Zhen Dong Luo,et al. A Stabilized Crank–Nicolson Mixed Finite Volume Element Formulation for the Non-stationary Incompressible Boussinesq Equations , 2016, J. Sci. Comput..
[36] José Luiz Boldrini,et al. The initial value problem for a generalized Boussinesq model , 1999 .
[37] Raimund Bürger,et al. Convexity-preserving flux identification for scalar conservation laws modelling sedimentation , 2013 .
[38] YE XIU. UNIFIED ANALYSIS OF FINITE VOLUME METHODS FOR THE STOKES EQUATIONS∗ , 2010 .
[39] Yinnian He,et al. Multiscale enrichment of a finite volume element method for the stationary Navier–Stokes problem , 2013, Int. J. Comput. Math..
[40] B. Mercier,et al. Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .
[41] Jeffrey F. Morris,et al. A Physical Introduction to Suspension Dynamics: Preface , 2011 .
[42] Amiya K. Pani,et al. Discontinuous Galerkin finite volume element methods for second‐order linear elliptic problems , 2009 .
[43] Ivan Lunati,et al. Mixed finite element -- primal finite volume element discretization of multicontinuum models , 2015 .
[44] James L. Barnard,et al. Secondary settling tanks : theory, modelling, design and operation , 1997 .
[45] Li Ronghua,et al. Generalized difference methods for a nonlinear Dirichlet problem , 1987 .
[46] Thirupathi Gudi,et al. hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems , 2008, Numerische Mathematik.
[47] Zhangxin Chen,et al. A new stabilized finite volume method for the stationary Stokes equations , 2009, Adv. Comput. Math..
[48] Ricardo Ruiz-Baier,et al. Stabilized mixed approximation of axisymmetric Brinkman flows , 2015 .
[49] Ludmil T. Zikatanov,et al. A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..
[50] A. E. BOYCOTT,et al. Sedimentation of Blood Corpuscles , 1920, Nature.
[51] Panagiotis Chatzipantelidis,et al. A Finite Volume Element Method for a Nonlinear Parabolic Problem , 2013 .
[52] Yuliya Gorb,et al. A flux-corrected transport algorithm for handling the close-packing limit in dense suspensions , 2012, J. Comput. Appl. Math..
[53] So-Hsiang Chou,et al. Analysis and convergence of a covolume method for the generalized Stokes problem , 1997, Math. Comput..
[54] Mary F. Wheeler,et al. A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..