Life-history traits of alvinocaridid shrimps inhabiting chemosynthetic ecosystems around Japan

[1]  V. Tunnicliffe,et al.  Species assemblage networks identify regional connectivity pathways among hydrothermal vents in the Northwest Pacific , 2022, Ecology and evolution.

[2]  J. Sun,et al.  Delineating biogeographic regions in Indian Ocean deep‐sea vents and implications for conservation , 2022 .

[3]  Chong Chen,et al.  Reproduction in deep‐sea vent shrimps is influenced by diet, with rhythms apparently unlinked to surface production , 2022, Ecology and evolution.

[4]  Zhiyun Chen,et al.  A preliminary study of macrofaunal communities and their carbon and nitrogen stable isotopes in the Haima cold seeps, South China Sea , 2022, Deep Sea Research Part I: Oceanographic Research Papers.

[5]  S. Lefebvre,et al.  Inferring functional traits in a deep-sea wood-boring bivalve using dynamic energy budget theory , 2021, Scientific Reports.

[6]  Nicholas D. Higgs,et al.  Application of scientific criteria for identifying hydrothermal ecosystems in need of protection , 2021 .

[7]  M. Cambon-Bonavita,et al.  Population structure and environmental niches of Rimicaris shrimps from the Mid Atlantic Ridge , 2021, bioRxiv.

[8]  J. Sarrazin,et al.  Population structure and reproduction of the alvinocaridid shrimp Rimicaris exoculata on the Mid-Atlantic Ridge: variations between habitats and vent fields , 2021, bioRxiv.

[9]  Chong Chen,et al.  Population connectivity of the crab Gandalfus yunohana (Takeda, Hashimoto & Ohta, 2000) (Decapoda: Brachyura: Bythograeidae) from deep-sea hydrothermal vents in the northwestern Pacific , 2020 .

[10]  P. Sumida,et al.  Molecular affinity of Southwest Atlantic Alvinocaris muricola with Atlantic Equatorial Belt populations , 2020 .

[11]  M. Cambon-Bonavita,et al.  Integrative taxonomy revisits the ontogeny and trophic niches of Rimicaris vent shrimps , 2020, Royal Society Open Science.

[12]  Roberto Danovaro,et al.  Ecological variables for developing a global deep-ocean monitoring and conservation strategy , 2020, Nature Ecology & Evolution.

[13]  A. Jamieson,et al.  Ecological variables for developing a global deep-ocean monitoring and conservation strategy , 2020, Nature Ecology & Evolution.

[14]  C. V. Van Dover Inactive Sulfide Ecosystems in the Deep Sea: A Review , 2019, Front. Mar. Sci..

[15]  H. Watanabe,et al.  Faunal composition of deep-sea hydrothermal vent fields on the Izu–Bonin–Mariana Arc, northwestern Pacific , 2019, Deep Sea Research Part I: Oceanographic Research Papers.

[16]  T. Schultz,et al.  An environmental baseline for food webs at deep-sea hydrothermal vents in Manus Basin (Papua New Guinea) , 2019, Deep Sea Research Part I: Oceanographic Research Papers.

[17]  Philip E. Steinberg,et al.  SCIENTIFIC RATIONALE AND INTERNATIONAL OBLIGATIONS FOR PROTECTION OF ACTIVE HYDROTHERMAL VENT ECOSYSTEMS FROM DEEP-SEA MINING , 2018 .

[18]  A. Metaxas,et al.  Exploring the Ecology of Deep-Sea Hydrothermal Vents in a Metacommunity Framework , 2018, Front. Mar. Sci..

[19]  J. Sarrazin,et al.  Picturing thermal niches and biomass of hydrothermal vent species , 2017 .

[20]  H. Watanabe,et al.  Different thermal preferences for brooding and larval dispersal of two neighboring shrimps in deep-sea hydrothermal vent fields , 2016 .

[21]  M. Cambon-Bonavita,et al.  Morphology of First Zoeal Stage of Four Genera of Alvinocaridid Shrimps from Hydrothermal Vents and Cold Seeps: Implications for Ecology, Larval Biology and Phylogeny , 2015, PloS one.

[22]  H. Watanabe,et al.  Genetic population structure of four hydrothermal vent shrimp species (Alvinocarididae) in the Okinawa Trough, Northwest Pacific , 2015 .

[23]  T. Komai,et al.  New records of Alvinocarididae (Crustacea: Decapoda: Caridea) from the southwestern Pacific hydrothermal vents, with descriptions of one new genus and three new species , 2015 .

[24]  P. Tyler,et al.  In hot and cold water: differential life‐history traits are key to success in contrasting thermal deep‐sea environments , 2015, The Journal of animal ecology.

[25]  Xinzheng Li Report on two deep-water caridean shrimp species (Crustacea: Decapoda: Caridea: Alvinocarididae, Acanthephyridae) from the northeastern South China Sea. , 2015, Zootaxa.

[26]  H. Watanabe,et al.  Species richness and community structure of benthic macrofauna and megafauna in the deep‐sea chemosynthetic ecosystems around the Japanese archipelago: an attempt to identify priority areas for conservation , 2014 .

[27]  C. V. Van Dover,et al.  Comparative Population Structure of Two Deep-Sea Hydrothermal-Vent-Associated Decapods (Chorocaris sp. 2 and Munidopsis lauensis) from Southwestern Pacific Back-Arc Basins , 2014, PloS one.

[28]  A. Vereshchaka,et al.  Distribution of Hydrothermal Alvinocaridid Shrimps: Effect of Geomorphology and Specialization to Extreme Biotopes , 2014, PloS one.

[29]  Kentaro Nakamura,et al.  High Connectivity of Animal Populations in Deep-Sea Hydrothermal Vent Fields in the Central Indian Ridge Relevant to Its Geological Setting , 2013, PloS one.

[30]  S. Hourdez,et al.  High connectivity across the fragmented chemosynthetic ecosystems of the deep Atlantic Equatorial Belt: efficient dispersal mechanisms or questionable endemism? , 2013, Molecular ecology.

[31]  P. Tyler,et al.  Spatial Variation in the Population Structure and Reproductive Biology of Rimicaris hybisae (Caridea: Alvinocarididae) at Hydrothermal Vents on the Mid-Cayman Spreading Centre , 2013, PloS one.

[32]  E. Serrão,et al.  Panmixia in a Fragmented and Unstable Environment: The Hydrothermal Shrimp Rimicaris exoculata Disperses Extensively along the Mid-Atlantic Ridge , 2012, PloS one.

[33]  R. Vrijenhoek Genetic diversity and connectivity of deep‐sea hydrothermal vent metapopulations , 2010, Molecular ecology.

[34]  Marcelo U. García-Guerrero Effect of Temperature on Consumption Rate of Main Yolk Components during Embryo Development of the Prawn Macrobrachium americanum (Crustacea: Decapoda: Palaemonidae) , 2010 .

[35]  R. Cowen,et al.  Larval dispersal and marine population connectivity. , 2009, Annual review of marine science.

[36]  S. Juniper,et al.  Ontogenetic shifts in the trophic ecology of two alvinocaridid shrimp species at hydrothermal vents on the Mariana Arc, western Pacific Ocean , 2008 .

[37]  Robert A. Sohn,et al.  Assessment of decadal-scale ecological change at a deep Mid-Atlantic hydrothermal vent and reproductive time-series in the shrimp Rimicaris exoculata , 2007, Journal of the Marine Biological Association of the United Kingdom.

[38]  M. Segonzac,et al.  Reproductive biology of Alvinocaris muricola (Decapoda: Caridea: Alvinocarididae) from cold seeps in the Congo Basin , 2006, Journal of the Marine Biological Association of the United Kingdom.

[39]  C. Young,et al.  Seasonality and zonation in the reproductive biology and population structure of the shrimp Alvinocaris stactophila (Caridea: Alvinocarididae) at a Louisiana Slope cold seep , 2006 .

[40]  Y. Lambert,et al.  Egg survival, embryonic development, and larval characteristics of northern shrimp (Pandalus borealis) females subject to different temperature and feeding conditions , 2005 .

[41]  M. Segonzac,et al.  A revision of the genus Alvinocaris Williams and Chace (Crustacea: Decapoda: Caridea: Alvinocarididae), with descriptions of a new genus and a new species of Alvinocaris , 2005 .

[42]  C. Young,et al.  Deep-sea ecology: Developmental arrest in vent worm embryos , 2001, Nature.

[43]  P. Tyler,et al.  Temperature/pressure tolerance of the first larval stage of Mirocaris fortunata from Lucky Strike hydrothermal vent field , 2000, Journal of the Marine Biological Association of the United Kingdom.

[44]  P. Tyler,et al.  Reproductive biology of three caridean shrimp, Rimicaris exoculata, Chorocaris chacei and Mirocaris fortunata (Caridea: Decapoda), from hydrothermal vents , 2000, Journal of the Marine Biological Association of the United Kingdom.

[45]  T. Pickering,et al.  Temperature effects on embryo and early larval development of the spiny lobster Jasus edwardsii, and description of a method to predict larval hatch times , 2000 .

[46]  J. Trask,et al.  Diversity at deep-sea hydrothermal vent and intertidal mussel beds , 2000 .

[47]  P. Tyler,et al.  Reproductive biology, sexual dimorphism, and population structure of the deep sea hydrothermal vent scale-worm, Branchipolynoe seepensis (Polychaeta: Polynoidae) , 2000, Journal of the Marine Biological Association of the United Kingdom.

[48]  K. Anger,et al.  Morphometric and reproductive traits of tropical Caridean shrimps , 1998 .

[49]  J. Sargent,et al.  Occurrence of 16:2(n-4) and 18:2(n-4) fatty acids in the lipids of the hydrothermal vent shrimps Rimicaris exoculata and Alvinocaris markensis : nutritional and trophic implications , 1997 .

[50]  M. Zbinden,et al.  Biology and ecology of Rimicaris exoculata, a symbiotic shrimp from deep-sea hydrothermal vents , 2020 .

[51]  P. Johnston,et al.  An Overview of Seabed Mining Including the Current State of Development, Environmental Impacts, and Knowledge Gaps , 2018, Front. Mar. Sci..

[52]  S. Arnaud-Haondb,et al.  Scientific rationale and international obligations for protection of active hydrothermal vent ecosystems from deep-sea mining , 2018 .

[53]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[54]  A. Metaxas,et al.  Population structure of two deep-sea hydrothermal vent gastropods from the Juan de Fuca Ridge, NE Pacific , 2008 .

[55]  K. Anger,et al.  MORPHOMETRIC AND REPRODUCTIVE TRAITS OF , 1998 .