Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.

We demonstrate the fabrication of micropore and nanopore features in hollow antiresonant reflecting optical waveguides to create an electrical and optical analysis platform that can size select and detect a single nanoparticle. Micropores (4 μm diameter) are reactive-ion etched through the top SiO(2) and SiN layers of the waveguides, leaving a thin SiN membrane above the hollow core. Nanopores are formed in the SiN membranes using a focused ion-beam etch process that provides control over the pore size. Openings as small as 20 nm in diameter are created. Optical loss measurements indicate that micropores did not significantly alter the loss along the waveguide.

[1]  X. Zhuang,et al.  A single-molecule study of RNA catalysis and folding. , 2000, Science.

[2]  P G Schultz,et al.  Monitoring the conformational fluctuations of DNA hairpins using single-pair fluorescence resonance energy transfer. , 2001, Journal of the American Chemical Society.

[3]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[4]  D. Lilley,et al.  Structural dynamics of individual Holliday junctions , 2003, Nature Structural Biology.

[5]  D. Deamer,et al.  Single-molecule detection sensitivity using planar integrated optics on a chip. , 2006, Optics letters.

[6]  A. Hawkins,et al.  Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics. , 2007, Optics express.

[7]  Qun Cai,et al.  Nanopore sculpting with noble gas ions. , 2006, Journal of applied physics.

[8]  F. Ligler,et al.  Evanescent wave fluorescence biosensors. , 2005, Biosensors & bioelectronics.

[9]  P. Schwille,et al.  Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[10]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[11]  Holger Schmidt,et al.  Optofluidic waveguides: I. Concepts and implementations , 2008, Microfluidics and nanofluidics.

[12]  D. P. Fromm,et al.  Methods of single-molecule fluorescence spectroscopy and microscopy , 2003 .

[13]  S. J. Park,et al.  Transport of multiply and highly charged ions through nanoscale apertures in silicon nitride membranes , 2006 .

[14]  D. Deamer,et al.  Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip. , 2009, Biosensors & bioelectronics.

[15]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[16]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[17]  A. Hawkins,et al.  Integrated ARROW waveguides with hollow cores. , 2004, Optics express.

[18]  A. Hawkins,et al.  Hollow-core waveguide characterization by optically induced particle transport. , 2008, Optics letters.

[19]  A. Hawkins,et al.  Optofluidic waveguides: II. Fabrication and structures , 2007, Microfluidics and nanofluidics.

[20]  E. Rhoades,et al.  Watching proteins fold one molecule at a time , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[22]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. B. Caldwell,et al.  Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Hochstrasser,et al.  Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Dongliang Yin,et al.  Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides , 2007, SPIE BiOS.

[26]  Alexey Bezryadin,et al.  Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams , 2006 .

[27]  D. Deamer,et al.  Planar optofluidic chip for single particle detection, manipulation, and analysis. , 2007, Lab on a chip.

[28]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.