Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic
暂无分享,去创建一个
Les Kaufman | Fabiano L. Thompson | Marcos Farina | L. Kaufman | F. Thompson | M. Farina | A. Bastos | R. Francini-Filho | L. Salgado | J. Kleypas | G. Amado-Filho | R. Moura | P. Sumida | Arthur Guth | G. H. Pereira-Filho | D. P. Abrantes | P. S. Brasileiro | R. Bahia | R. N. Leal | Ronaldo B. Francini-Filho | Gilberto M. Amado-Filho | Alex C. Bastos | Ricardo G. Bahia | Rodrigo L. Moura | Leonardo T. Salgado | Paulo Y. Sumida | Arthur Z. Guth | Guilherme H. Pereira-Filho | Douglas P. Abrantes | Poliana S. Brasileiro | Rachel N. Leal | Joanie A. Kleypas | G. Pereira-Filho | L. T. Salgado
[1] R. Feely,et al. Ocean acidification: the other CO2 problem. , 2009, Annual review of marine science.
[2] A. Millar,et al. The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia , 2006 .
[3] J. Milliman. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state , 1993 .
[4] E. Verheij. The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from the Spermonde Archipelago, Indonesia , 1993 .
[5] D. Bosence,et al. Maerl growth, carbonate production rates and accumulation rates in the ne atlantic , 2003 .
[6] O. Hoegh-Guldberg,et al. Ocean acidification causes bleaching and productivity loss in coral reef builders , 2008, Proceedings of the National Academy of Sciences.
[7] C. Summerhayes,et al. Upper continental margin sedimentation off Brazil , 1975 .
[8] A. Vecsei. Database on isolated low-latitude carbonate banks , 2000 .
[9] C. Maggs,et al. Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe , 2003 .
[10] W. Nelson. Calcified macroalgae - critical to coastal ecosystems and vulnerable to change: a review , 2009 .
[11] P. Horta,et al. Rhodolith beds at the easternmost extreme of South America: Community structure of an endangered environment , 2009 .
[12] D. P. Abrantes,et al. Rhodolith bed structure along a depth gradient on the northern coast of bahia state, brazil , 2010 .
[13] J. Gattuso,et al. Response of Mediterranean coralline algae to ocean acidification and elevated temperature , 2009 .
[14] T. Lenton,et al. The coral reef crisis: the critical importance of<350 ppm CO2. , 2009, Marine pollution bulletin.
[15] G. Amado-Filho,et al. Seaweed diversity associated with a Brazilian tropical rhodolith bed , 2010 .
[16] A. Rodriguez-Ramirez,et al. Status of coral reefs and associated ecosystems in southern Tropical America: Brazil, Colombia, Costa Rica, Panamá and Venezuela , 2008 .
[17] R. Steneck,et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.
[18] Michael S. Foster,et al. RHODOLITHS: BETWEEN ROCKS AND SOFT PLACES , 2001 .
[19] J. Milliman,et al. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss , 1996 .
[20] G. Amado-Filho,et al. Estructura de los mantos de rodolitos de 4 a 55 metros de profundidad en la costa sur del estado de Espírito Santo, Brasil , 2007 .
[21] L. Böhm,et al. ALGAL CALCIFICATION IN SOME CODIACEAE (CHLOROPHYTA): ULTRASTRUCTURE AND LOCATION OF SKELETAL DEPOSITS 1, 2 , 1978 .
[22] R. Henrich,et al. Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality , 1994 .
[23] M. Foster,et al. CLATHROMORPHUM NEREOSTRATUM (CORALLINALES, RHODOPHYTA): THE OLDEST ALGA? 1 , 2005 .
[24] J. Milliman,et al. Neritic and pelagic carbonate sedimentation in the marine environment : ignorance is not bliss , 1996 .
[25] J. Clavier,et al. Community metabolism in temperate maerl beds: I. carbon and carbonate fluxes , 2007 .
[26] J. Berges,et al. Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation , 2004 .
[27] P. Potin,et al. Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France , 1990, Hydrobiologia.
[28] F. Mackenzie,et al. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene , 2005 .
[29] Didier Boucher,et al. Calcium carbonate budget of a fringing reef on the West Coast of Barbados , 1977 .
[30] M. Kempf. Notes on the benthic bionomy of the N-NE Brazilian shelf , 1970 .
[31] D. Hopley,et al. The significance of coral reefs as global carbon sinks - Response to greenhouse. , 1991 .
[32] G. Amado-Filho,et al. Deep-water gelatinous rhodophytes from southern Espírito Santo State, Brazil , 2008 .
[33] J. Kleypas,et al. Modeled estimates of global reef habitat and carbonate production since the Last Glacial Maximum , 1997 .
[34] Foster,et al. Diversity and natural history of a Lithothamnion muelleri-Sargassum horridum community in the Gulf of California , 2007 .
[35] V. Peña,et al. Maërl community in the north-western Iberian Peninsula: a review of floristic studies and long-term changes , 2008 .
[36] C. Payri. Production carbonatée de quelques algues calcifiées sur un récif corallien de Polynésie française , 1995 .
[37] M. Spalding,et al. New estimates of global and regional coral reef areas , 1997, Coral Reefs.
[38] A. Vecsei. A new estimate of global reefal carbonate production including the fore-reefs , 2004 .
[39] G. Amado-Filho,et al. Taxonomy of rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo State, Brazil , 2009 .
[40] A. Vecsei. Carbonate production on isolated banks since 20 k.a. BP: climatic implications , 2004 .
[41] Z. M. Leão. The coral reefs of Bahia: Morphology, distribution and the major environmental impacts , 1996 .
[42] R. Ríosmena-Rodríguez,et al. Rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo State, Brazil, including the description of L. depressum sp. nov. , 2009 .