Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic

Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N - 27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50′ - 19°45′S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km2. Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO3 production was estimated from in situ growth assays at 1.07 kg m−2 yr−1, with a total production rate of 0.025 Gt yr−1, comparable to those of the world's largest biogenic CaCO3 deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades.

[1]  R. Feely,et al.  Ocean acidification: the other CO2 problem. , 2009, Annual review of marine science.

[2]  A. Millar,et al.  The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia , 2006 .

[3]  J. Milliman Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state , 1993 .

[4]  E. Verheij The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from the Spermonde Archipelago, Indonesia , 1993 .

[5]  D. Bosence,et al.  Maerl growth, carbonate production rates and accumulation rates in the ne atlantic , 2003 .

[6]  O. Hoegh-Guldberg,et al.  Ocean acidification causes bleaching and productivity loss in coral reef builders , 2008, Proceedings of the National Academy of Sciences.

[7]  C. Summerhayes,et al.  Upper continental margin sedimentation off Brazil , 1975 .

[8]  A. Vecsei Database on isolated low-latitude carbonate banks , 2000 .

[9]  C. Maggs,et al.  Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe , 2003 .

[10]  W. Nelson Calcified macroalgae - critical to coastal ecosystems and vulnerable to change: a review , 2009 .

[11]  P. Horta,et al.  Rhodolith beds at the easternmost extreme of South America: Community structure of an endangered environment , 2009 .

[12]  D. P. Abrantes,et al.  Rhodolith bed structure along a depth gradient on the northern coast of bahia state, brazil , 2010 .

[13]  J. Gattuso,et al.  Response of Mediterranean coralline algae to ocean acidification and elevated temperature , 2009 .

[14]  T. Lenton,et al.  The coral reef crisis: the critical importance of<350 ppm CO2. , 2009, Marine pollution bulletin.

[15]  G. Amado-Filho,et al.  Seaweed diversity associated with a Brazilian tropical rhodolith bed , 2010 .

[16]  A. Rodriguez-Ramirez,et al.  Status of coral reefs and associated ecosystems in southern Tropical America: Brazil, Colombia, Costa Rica, Panamá and Venezuela , 2008 .

[17]  R. Steneck,et al.  Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.

[18]  Michael S. Foster,et al.  RHODOLITHS: BETWEEN ROCKS AND SOFT PLACES , 2001 .

[19]  J. Milliman,et al.  Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss , 1996 .

[20]  G. Amado-Filho,et al.  Estructura de los mantos de rodolitos de 4 a 55 metros de profundidad en la costa sur del estado de Espírito Santo, Brasil , 2007 .

[21]  L. Böhm,et al.  ALGAL CALCIFICATION IN SOME CODIACEAE (CHLOROPHYTA): ULTRASTRUCTURE AND LOCATION OF SKELETAL DEPOSITS 1, 2 , 1978 .

[22]  R. Henrich,et al.  Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality , 1994 .

[23]  M. Foster,et al.  CLATHROMORPHUM NEREOSTRATUM (CORALLINALES, RHODOPHYTA): THE OLDEST ALGA? 1 , 2005 .

[24]  J. Milliman,et al.  Neritic and pelagic carbonate sedimentation in the marine environment : ignorance is not bliss , 1996 .

[25]  J. Clavier,et al.  Community metabolism in temperate maerl beds: I. carbon and carbonate fluxes , 2007 .

[26]  J. Berges,et al.  Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation , 2004 .

[27]  P. Potin,et al.  Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France , 1990, Hydrobiologia.

[28]  F. Mackenzie,et al.  Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene , 2005 .

[29]  Didier Boucher,et al.  Calcium carbonate budget of a fringing reef on the West Coast of Barbados , 1977 .

[30]  M. Kempf Notes on the benthic bionomy of the N-NE Brazilian shelf , 1970 .

[31]  D. Hopley,et al.  The significance of coral reefs as global carbon sinks - Response to greenhouse. , 1991 .

[32]  G. Amado-Filho,et al.  Deep-water gelatinous rhodophytes from southern Espírito Santo State, Brazil , 2008 .

[33]  J. Kleypas,et al.  Modeled estimates of global reef habitat and carbonate production since the Last Glacial Maximum , 1997 .

[34]  Foster,et al.  Diversity and natural history of a Lithothamnion muelleri-Sargassum horridum community in the Gulf of California , 2007 .

[35]  V. Peña,et al.  Maërl community in the north-western Iberian Peninsula: a review of floristic studies and long-term changes , 2008 .

[36]  C. Payri Production carbonatée de quelques algues calcifiées sur un récif corallien de Polynésie française , 1995 .

[37]  M. Spalding,et al.  New estimates of global and regional coral reef areas , 1997, Coral Reefs.

[38]  A. Vecsei A new estimate of global reefal carbonate production including the fore-reefs , 2004 .

[39]  G. Amado-Filho,et al.  Taxonomy of rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo State, Brazil , 2009 .

[40]  A. Vecsei Carbonate production on isolated banks since 20 k.a. BP: climatic implications , 2004 .

[41]  Z. M. Leão The coral reefs of Bahia: Morphology, distribution and the major environmental impacts , 1996 .

[42]  R. Ríosmena-Rodríguez,et al.  Rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo State, Brazil, including the description of L. depressum sp. nov. , 2009 .