Inner structure of vehicular ensembles and random matrix theory

Abstract We introduce a special class of random matrices (DUE) whose spectral statistics corresponds to statistics of microscopical quantities detected in vehicular flows. Comparing the level spacing distribution (for ordered eigenvalues in unfolded spectra of DUE matrices) with the time-clearance distribution extracted from various areas of the flux-density diagram (evaluated from original traffic data measured on Czech expressways with high occupancies) we demonstrate that the set of classical systems showing an universality associated with Random Matrix Ensembles can be extended by traffic systems.

[1]  Dirk Helbing,et al.  Determination of Interaction Potentials in Freeway Traffic From Steady-State Statistics , 2003, cond-mat/0301484.

[2]  M. Krbalek,et al.  The statistical properties of the city transport in Cuernavaca (Mexico) and random matrix ensembles , 2000, nlin/0001015.

[3]  Milan Krbalek,et al.  Vehicular headways on signalized intersections: theory, models, and reality , 2014, 1403.7454.

[4]  Milan Krbalek,et al.  Theoretical predictions for vehicular headways and their clusters , 2012, 1207.6579.

[5]  Martin Treiber,et al.  Traffic Flow Dynamics , 2013 .

[6]  J. Baik,et al.  A model for the bus system in Cuernavaca (Mexico) , 2005, math/0510414.

[7]  M. Krbálek Inter-vehicle gap statistics on signal-controlled crossroads , 2007, 0710.4988.

[8]  Adolf D. May,et al.  Traffic Flow Fundamentals , 1989 .

[9]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[10]  O. Giraud,et al.  Integrable random matrix ensembles , 2011, 1104.3777.

[11]  Milan Krbalek,et al.  Headway statistics of public transport in Mexican cities , 2002, nlin/0206043.

[12]  Dirk Helbing,et al.  Hamilton-like statistics in onedimensional driven dissipative many-particle systems , 2008, 0809.0426.

[13]  Jianming Hu,et al.  A New Car-Following Model Inspired by Galton Board , 2008 .

[14]  Xiaogang Jin,et al.  Departure headways at signalized intersections: A log-normal distribution model approach , 2009 .

[15]  Milan Krbalek,et al.  Spectral rigidity of vehicular streams (random matrix theory approach) , 2008, 0812.1106.

[16]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[17]  Vasilii S Vladimirov Equations of mathematical physics , 1971 .

[18]  David R. Cox,et al.  The Oxford Dictionary of Statistical Terms , 2006 .

[19]  Milan Krbalek,et al.  Equilibrium distributions in a thermodynamical traffic gas , 2006 .