A Preconditioner for Linear Systems Arising From Interior Point Optimization Methods

We explore a preconditioning technique applied to the problem of solving linear systems arising from primal-dual interior point algorithms in linear and quadratic programming. The preconditioner has the attractive property of improved eigenvalue clustering with increased ill-conditioning of the (1,1) block of the saddle point matrix. It fits well into the optimization framework since the interior point iterates yield increasingly ill-conditioned linear systems as the solution is approached. We analyze the spectral characteristics of the preconditioner, utilizing projections onto the null space of the constraint matrix, and demonstrate performance on problems from the NETLIB and CUTEr test suites. The numerical experiments include results based on inexact inner iterations.

[1]  G. Golub,et al.  The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems , 1988 .

[2]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[3]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[4]  Ladislav Lukand Jan Vl Indefinitely Preconditioned Inexact Newton Method for Large Sparse Equality Constrained Non-linear Programming Problems , 1998 .

[5]  D. Sorensen,et al.  A new class of preconditioners for large-scale linear systems from interior point methods for linear programming , 2005 .

[6]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[7]  Luca Bergamaschi,et al.  Erratum to: Inexact constraint preconditioners for linear systems arising in interior point methods , 2011, Comput. Optim. Appl..

[8]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[9]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[10]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[11]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[12]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[13]  Nicholas I. M. Gould,et al.  Implicit-Factorization Preconditioning and Iterative Solvers for Regularized Saddle-Point Systems , 2006, SIAM J. Matrix Anal. Appl..

[14]  Gene H. Golub,et al.  On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..

[15]  Anders Forsgren,et al.  Iterative Solution of Augmented Systems Arising in Interior Methods , 2007, SIAM J. Optim..

[16]  Yin Zhang,et al.  Solving large-scale linear programs by interior-point methods under the Matlab ∗ Environment † , 1998 .

[17]  Andrew J. Wathen,et al.  Approximate Factorization Constraint Preconditioners for Saddle-Point Matrices , 2005, SIAM J. Sci. Comput..

[18]  Shinji Mizuno,et al.  Convergence of a Class of Inexact Interior-Point Algorithms for Linear Programs , 1999, Math. Oper. Res..

[19]  S. Bellavia Inexact Interior-Point Method , 1998 .

[20]  D. Schötzau,et al.  Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .

[21]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[22]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[23]  Chen Greif,et al.  Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..

[24]  Stephen J. Wright,et al.  Object-oriented software for quadratic programming , 2003, TOMS.

[25]  Stefania Bellavia,et al.  Convergence Analysis of an Inexact Infeasible Interior Point Method for Semidefinite Programming , 2004, Comput. Optim. Appl..

[26]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[27]  Barry W. Peyton,et al.  Block sparse Cholesky algorithms on advanced uniprocessor computers , 1991 .

[28]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[29]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[30]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[31]  Tim Rees,et al.  Augmentation preconditioning for saddle point systems arising from interior point methods , 2006 .

[32]  Yousef Saad,et al.  Multilevel Preconditioners Constructed From Inverse-Based ILUs , 2005, SIAM J. Sci. Comput..