An adaptive algorithm for the Thomas–Fermi equation

A free boundary value problem is introduced to approximate the original Thomas–Fermi equation. The unknown truncated free boundary is determined iteratively. We transform the free boundary value problem to a nonlinear boundary value problem defined on [0,1]. We present an adaptive algorithm to solve the problem by means of the moving mesh finite element method. Comparison of our numerical results with those obtained by other approaches shows high accuracy of our method.

[1]  Juan I. Ramos,et al.  Piecewise-adaptive decomposition methods , 2009 .

[2]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .

[3]  Qingbiao Wu,et al.  Numerical solution of the Falkner-Skan equation based on quasilinearization , 2009, Appl. Math. Comput..

[4]  Juan I. Ramos,et al.  Piecewise quasilinearization techniques for singular boundary-value problems , 2004 .

[5]  Ping Lin,et al.  A splitting moving mesh method for reaction-diffusion equations of quenching type , 2006, J. Comput. Phys..

[6]  Riccardo Fazio,et al.  A Novel Approach to the Numerical Solution of Boundary Value Problems on Infinite Intervals , 1996 .

[7]  Dan Anderson,et al.  Variational approach to the Thomas–Fermi equation , 2004 .

[8]  Natalia Kopteva,et al.  A Robust Adaptive Method for a Quasi-Linear One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..

[9]  K. Parand,et al.  Rational Chebyshev pseudospectral approach for solving Thomas–Fermi equation , 2009 .

[10]  Shigehiro Kobayashi Some Coefficients of the Series Expansion of the TFD Function , 1955 .

[11]  Bernard J. Laurenzi An analytic solution to the Thomas–Fermi equation , 1990 .

[12]  A. Cedillo A perturbative approach to the Thomas–Fermi equation in terms of the density , 1993 .

[13]  G. Adomian Solution of the Thomas-Fermi equation , 1998 .

[14]  Riccardo Fazio,et al.  A survey on free boundary identification of the truncated boundary in numerical BVPs on infinite intervals , 2002 .

[15]  Astronomy,et al.  Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs , 2001, physics/0102041.

[16]  J. Awrejcewicz,et al.  Quasifractional approximants for matching small and large δ approaches , 2003 .

[17]  C. Bender,et al.  A new perturbative approach to nonlinear problems , 1989 .

[18]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Abdul-Majid Wazwaz,et al.  The modified decomposition method and Padé approximants for solving the Thomas-Fermi equation , 1999, Appl. Math. Comput..

[20]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[21]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[22]  Shijun Liao,et al.  An explicit analytic solution to the Thomas-Fermi equation , 2003, Appl. Math. Comput..

[23]  An exact result for the Thomas–Fermi equation: a priori bounds for the potential slope at the origin , 2008 .

[24]  Shigehiro Kobayashi,et al.  Accurate Value of the Initial Slope of the Ordinary TF Function , 1955 .

[25]  E. Di Grezia,et al.  Fermi, Majorana and the Statistical Model of Atoms , 2004 .

[26]  Ruo Li,et al.  Efficient computation of dendritic growth with r-adaptive finite element methods , 2008, J. Comput. Phys..

[27]  Hang Xu,et al.  Series solution to the Thomas–Fermi equation , 2007 .

[28]  Fernández,et al.  Approximate solutions to the Thomas-Fermi equation. , 1990, Physical review. A, Atomic, molecular, and optical physics.