A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3)

This paper describes the formal verification of an irrationality proof of ζ(3), the evaluation of the Riemann zeta function, using the Coq proof assistant. This result was first proved by Apery in 1978, and the proof we have formalized follows the path of his original presentation. The crux of this proof is to establish that some sequences satisfy a common recurrence. We formally prove this result by an a posteriori verification of calculations performed by computer algebra algorithms in a Maple session. The rest of the proof combines arithmetical ingredients and some asymptotic analysis that we conduct by extending the Mathematical Components libraries. The formalization of this proof is complete up to a weak corollary of the Prime Number Theorem.

[1]  Cyril Cohen,et al.  Construction of Real Algebraic Numbers in Coq , 2012, ITP.

[2]  Enrico Tassi,et al.  A Small Scale Reflection Extension for the Coq system , 2008 .

[3]  Benjamin Werner,et al.  Importing HOL Light into Coq , 2010, ITP.

[4]  M. H. Protter,et al.  THE SOLUTION OF THE PROBLEM OF INTEGRATION IN FINITE TERMS , 1970 .

[5]  Frédéric Besson,et al.  Fast Reflexive Arithmetic Tactics the Linear Case and Beyond , 2006, TYPES.

[6]  Denis Hanson,et al.  On the Product of the Primes , 1972, Canadian Mathematical Bulletin.

[7]  B. Feng,et al.  An Simple Elementary Proof for the Inequality dn < 3n , 2005 .

[8]  Tanguy Rivoal Propriétés diophantiennes de la fonction zêta de Riemann aux entiers impairs , 2001 .

[9]  Cyril Cohen,et al.  Refinements for Free! , 2013, CPP.

[10]  Cyril Cohen,et al.  Formalized algebraic numbers: construction and first-order theory. (Formalisation des nombres algébriques : construction et théorie du premier ordre) , 2012 .

[11]  John Harrison,et al.  A Skeptic's Approach to Combining HOL and Maple , 1998, Journal of Automated Reasoning.

[12]  John Harrison,et al.  Formalizing an Analytic Proof of the Prime Number Theorem , 2009, Journal of Automated Reasoning.

[13]  Maribel Fernández,et al.  Curry-Style Types for Nominal Terms , 2006, TYPES.

[14]  Benjamin Grégoire,et al.  Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.

[15]  David Delahaye,et al.  Dealing with algebraic expressions over a field in Coq using Maple , 2005, J. Symb. Comput..

[16]  Brian Campbell,et al.  An Executable Semantics for CompCert C , 2012, CPP.

[17]  F. Beukers A Note on the Irrationality of ζ(2) and ζ(3) , 1979 .

[18]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[19]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[20]  M. Artin,et al.  Société Mathématique de France , 1994 .

[21]  Вадим Валентинович Зудилин,et al.  Одно из чисел $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ иррационально@@@One of the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational , 2001 .

[22]  David Aspinall,et al.  Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.

[23]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..