A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3)
暂无分享,去创建一个
Enrico Tassi | Assia Mahboubi | Thomas Sibut-Pinote | Frédéric Chyzak | Thomas Sibut-Pinote | A. Mahboubi | F. Chyzak | Enrico Tassi
[1] Cyril Cohen,et al. Construction of Real Algebraic Numbers in Coq , 2012, ITP.
[2] Enrico Tassi,et al. A Small Scale Reflection Extension for the Coq system , 2008 .
[3] Benjamin Werner,et al. Importing HOL Light into Coq , 2010, ITP.
[4] M. H. Protter,et al. THE SOLUTION OF THE PROBLEM OF INTEGRATION IN FINITE TERMS , 1970 .
[5] Frédéric Besson,et al. Fast Reflexive Arithmetic Tactics the Linear Case and Beyond , 2006, TYPES.
[6] Denis Hanson,et al. On the Product of the Primes , 1972, Canadian Mathematical Bulletin.
[7] B. Feng,et al. An Simple Elementary Proof for the Inequality dn < 3n , 2005 .
[8] Tanguy Rivoal. Propriétés diophantiennes de la fonction zêta de Riemann aux entiers impairs , 2001 .
[9] Cyril Cohen,et al. Refinements for Free! , 2013, CPP.
[10] Cyril Cohen,et al. Formalized algebraic numbers: construction and first-order theory. (Formalisation des nombres algébriques : construction et théorie du premier ordre) , 2012 .
[11] John Harrison,et al. A Skeptic's Approach to Combining HOL and Maple , 1998, Journal of Automated Reasoning.
[12] John Harrison,et al. Formalizing an Analytic Proof of the Prime Number Theorem , 2009, Journal of Automated Reasoning.
[13] Maribel Fernández,et al. Curry-Style Types for Nominal Terms , 2006, TYPES.
[14] Benjamin Grégoire,et al. Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.
[15] David Delahaye,et al. Dealing with algebraic expressions over a field in Coq using Maple , 2005, J. Symb. Comput..
[16] Brian Campbell,et al. An Executable Semantics for CompCert C , 2012, CPP.
[17] F. Beukers. A Note on the Irrationality of ζ(2) and ζ(3) , 1979 .
[18] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[19] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[20] M. Artin,et al. Société Mathématique de France , 1994 .
[21] Вадим Валентинович Зудилин,et al. Одно из чисел $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ иррационально@@@One of the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational , 2001 .
[22] David Aspinall,et al. Formalising Java's Data Race Free Guarantee , 2007, TPHOLs.
[23] Bruno Salvy,et al. Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..