Improved Thermoelectric Performance of Silver Nanoparticles‐Dispersed Bi2Te3 Composites Deriving from Hierarchical Two‐Phased Heterostructure

A practical and feasible bottom-up chemistry approach is demonstrated to dramatically enhance thermoelectric properties of the Bi2Te3 matrix by means of exotically introducing silver nanoparticles (AgNPs) for constructing thermoelectric composites with the hierarchical two-phased heterostructure. By regulating the content of AgNPs and fine-tuning the architecture of nanostructured thermoelectric materials, more heat-carrying phonons covering the broad phonon mean free path distribution range can be scattered. The results show that the uniformly dispersed AgNPs not only effectively suppress the growth of Bi2Te3 grains, but also introduce nanoscale precipitates and form new interfaces with the Bi2Te3 matrix, resulting in a hierarchical two-phased heterostructure, which causes intense scattering of phonons with multiscale mean free paths, and therefore significantly reduce the lattice thermal conductivity. Meanwhile, the improved power factor is maintained due to low-energy electron filtering and excellent electrical transport property of Ag itself. Consequently, the maximum ZT is amazingly found to be enhanced by 304% arising from the hierarchical heterostructure when the AgNPs content reaches 2.0 vol%. This study offers an easily scalable and low-cost route to construct a wide range of multiscale hierarchically heterostructured bulk composites with significant enhancement of thermoelectric performance.

[1]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[2]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .

[3]  G. J. Snyder,et al.  Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. , 2011, ACS nano.

[4]  Han Li,et al.  Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances , 2013, Nanotechnology.

[5]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[6]  M. Dresselhaus,et al.  Role of phonon dispersion in studying phonon mean free paths in skutterudites , 2012 .

[7]  Andreas Kornowski,et al.  Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles , 2009, 1003.0621.

[8]  Galen D. Stucky,et al.  Heterostructured Approaches to Efficient Thermoelectric Materials , 2014 .

[9]  T. Hyeon,et al.  n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. , 2012, Nano letters.

[10]  Terry M. Tritt,et al.  Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. , 2010, Nano letters.

[11]  Haijun Wu,et al.  High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity , 2013 .

[12]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[13]  A. Palmqvist,et al.  Composite thermoelectric materials with embedded nanoparticles , 2013, Journal of Materials Science.

[14]  D. Negi,et al.  Nanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2–ZnSe , 2014 .

[15]  M. Liu,et al.  A study of Yb0.2Co4Sb12–AgSbTe2 nanocomposites: simultaneous enhancement of all three thermoelectric properties , 2014 .

[16]  Gang Chen,et al.  Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N‐Type Half‐Heusler Materials HfxZr1–xNiSn0.99Sb0.01 , 2013 .

[17]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[18]  M. Kanatzidis,et al.  Nanostructures boost the thermoelectric performance of PbS. , 2011, Journal of the American Chemical Society.

[19]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[20]  M. Kanatzidis,et al.  High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. , 2011, Journal of the American Chemical Society.

[21]  Dawei Liu,et al.  BiSbTe‐Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties , 2013 .

[22]  Vinayak P. Dravid,et al.  Phonon Scattering and Thermal Conductivity in p‐Type Nanostructured PbTe‐BaTe Bulk Thermoelectric Materials , 2012 .

[23]  Terry M. Tritt,et al.  Holey and Unholey Semiconductors , 1999, Science.

[24]  Pierre F. P. Poudeu,et al.  Enhancement in Thermoelectric Figure of Merit in Nanostructured Bi2Te3 with Semimetal Nanoinclusions , 2011 .

[25]  F. Kang,et al.  Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range , 2013 .

[26]  Seeram Ramakrishna,et al.  A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials , 2013 .

[27]  H. Hng,et al.  Influence of Nanoinclusions on Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites , 2011 .

[28]  Brian C. Sales,et al.  Smaller Is Cooler , 2002, Science.

[29]  Younan Xia,et al.  Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. , 2009, ACS applied materials & interfaces.

[30]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[31]  E. Shin,et al.  The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite , 2013 .

[32]  M. Kanatzidis,et al.  Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation , 2006 .

[33]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[34]  J. Bowers,et al.  Effect of nanoparticle scattering on thermoelectric power factor , 2009 .

[35]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[36]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[37]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[38]  Kyu Hyoung Lee,et al.  Enhancing the Thermoelectric Properties of p-Type Bulk Bi-Sb-Te Nanocomposites via Solution-Based Metal Nanoparticle Decoration , 2013, Journal of Electronic Materials.

[39]  S. Yamanaka,et al.  Thermoelectric properties of Au nanoparticle‐supported Sb1.6Bi0.4Te3 synthesized by a γ‐ray irradiation method , 2014 .

[40]  Lianjun Wang,et al.  Preparation of 1-D/3-D structured AgNWs/Bi2Te3 nanocomposites with enhanced thermoelectric properties , 2014 .

[41]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[42]  I. Dmitruk,et al.  Surface plasmon as a probe for melting of silver nanoparticles , 2010, Nanotechnology.

[43]  T. Hyeon,et al.  Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles , 2014 .

[44]  J. Sakamoto,et al.  Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications , 2011 .

[45]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[46]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[47]  J. Sakamoto,et al.  Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion , 2012 .

[48]  S. Faleev,et al.  Theory of enhancement of thermoelectric properties of materials with nanoinclusions , 2008, 0807.0260.

[49]  Younan Xia,et al.  Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) , 2002 .

[50]  K. Koumoto,et al.  Enhancement of Thermoelectric Figure of Merit for Bi0.5Sb1.5Te3 by Metal Nanoparticle Decoration , 2012, Journal of Electronic Materials.

[51]  M. Zebarjadi,et al.  Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution. , 2011, Nano letters.

[52]  Yue Wu,et al.  Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures , 2012 .

[53]  K. Wojciechowski,et al.  Structural and thermoelectric properties of AgSbTe2-AgSbSe2 pseudobinary system , 2009 .

[54]  Chao Han,et al.  Recent progress in thermoelectric materials , 2014 .

[55]  Muhammet S. Toprak,et al.  Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2∕CoSb3 composites , 2007 .

[56]  Ctirad Uher,et al.  High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. , 2011, Journal of the American Chemical Society.