A FAST PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a popular and robust strategy for optimization problems. One main difficulty in applying PSO to real-world applications is that PSO usually need a large number of fitness evaluations before a satisfying result can be obtained. This paper introduces a new "fast particle swarm optimization" (FPSO) that does not evaluate all new positions owning a fitness and associated reliability value of each particle of the swarm and the reliability value is only evaluated using the true fitness function if the reliability value is below a threshold. Moreover, applying random evaluation, reliability value update and self-adaptive threshold strategies to the FPSO further enhances the performance of the algorithm.

[1]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[2]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[3]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[4]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[5]  Yuhui Shi,et al.  Extracting rules from fuzzy neural network by particle swarm optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[6]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[7]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[8]  X. Yao Evolving Artificial Neural Networks , 1999 .

[9]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[10]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  Larry Bull,et al.  On Model-Based Evolutionary Computation , 1999, Soft Comput..

[12]  Bernhard Sendhoff,et al.  On Evolutionary Optimization with Approximate Fitness Functions , 2000, GECCO.

[13]  D. Goldberg,et al.  Don't evaluate, inherit , 2001 .

[14]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[15]  Sung-Bae Cho,et al.  An efficient genetic algorithm with less fitness evaluation by clustering , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[16]  下平 丕作士,et al.  The Genetic and Evolutionary Computation Conference , 2002 .

[17]  Mehrdad Salami,et al.  A Fitness Estimation Strategy for Genetic Algorithms , 2002, IEA/AIE.

[18]  Hitoshi Iba,et al.  Particle swarm optimization with Gaussian mutation , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[19]  Salima Hassas,et al.  Using swarm intelligence for dynamic Web content organizing , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[20]  Dipti Srinivasan,et al.  Traffic incident detection using particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[21]  Mehrdad Salami,et al.  A fast evaluation strategy for evolutionary algorithms , 2003, Appl. Soft Comput..

[22]  Zhongzhi Shi,et al.  Swarm Intelligence Clustering Algorithm Based on Attractor , 2005, ICNC.

[23]  Jeng-Shyang Pan,et al.  A Parallel Particle Swarm Optimization Algorithm with Communication Strategies , 2005, J. Inf. Sci. Eng..

[24]  Mohammed El-Abd,et al.  Factors governing the behavior of multiple cooperating swarms , 2005, GECCO '05.

[25]  Shiow-Fen Hwang,et al.  MeSwarm: memetic particle swarm optimization , 2005, GECCO '05.

[26]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[27]  Peng Xiao,et al.  A Mountain Clustering Based on Improved PSO Algorithm , 2006 .