Solar cell efficiency tables (version 41)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since June 2012 are reviewed. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[2]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .

[3]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[4]  M. Green,et al.  20 000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car race , 1997 .

[5]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[6]  Kenji Yamamoto,et al.  Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature , 1998 .

[7]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[8]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[9]  Paul A. Basore,et al.  Pilot production of thin-film crystalline silicon on glass modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[10]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[11]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[12]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[13]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[14]  D. C. Law,et al.  Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells , 2009 .

[15]  Johannes Meier,et al.  High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI TM-M R&D Reactor , 2009 .

[16]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[17]  Peter Lund,et al.  Review of stability for advanced dye solar cells , 2010 .

[18]  David D. Smith,et al.  Generation 3: Improved performance at lower cost , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[19]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[20]  Peter Engelhart,et al.  R&D pilot line production of multi-crystalline Si solar cells exceeding cell efficiencies of 18% , 2011 .

[21]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[22]  R. J. Schwartz,et al.  Compact spectrum splitting photovoltaic module with high efficiency , 2011 .

[23]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[24]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[25]  Linlin Yang,et al.  New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[26]  Martin A. Green,et al.  Solar cell efficiency tables (version 40) , 2012 .

[27]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[28]  Lars Stolt,et al.  World‐record Cu(In,Ga)Se2‐based thin‐film sub‐module with 17.4% efficiency , 2012 .

[29]  Suren A. Gevorgyan,et al.  The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices , 2012 .

[30]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[31]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[32]  Tayfun Gokmen,et al.  Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .

[33]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .