Practical Characteristics of Neural Network and Conventional Pattern Classifiers on Artificial and Speech Problems

Eight neural net and conventional pattern classifiers (Bayesian-unimodal Gaussian, k-nearest neighbor, standard back-propagation, adaptive-stepsize back-propagation, hypersphere, feature-map, learning vector quantizer, and binary decision tree) were implemented on a serial computer and compared using two speech recognition and two artificial tasks. Error rates were statistically equivalent on almost all tasks, but classifiers differed by orders of magnitude in memory requirements, training time, classification time, and ease of adaptivity. Nearest-neighbor classifiers trained rapidly but required the most memory. Tree classifiers provided rapid classification but were complex to adapt. Back-propagation classifiers typically required long training times and had intermediate memory requirements. These results suggest that classifier selection should often depend more heavily on practical considerations concerning memory and computation resources, and restrictions on training and classification times than on error rate.