Optimization of condition-based maintenance using soft computing

Due to high costs associated with conventional maintenance strategies, application of soft computing in monitoring the condition of equipment to predict the health of various components of machine tools in manufacturing processes has attracted the attention of researchers. Soft computing is a better alternate to predict and optimize the manufacturing processes related to physics-based models as these processes are complex and precarious. The theories of artificial neural systems, fuzzy logic, genetic algorithms, ant colony optimization, simulated annealing and particle swarm optimization are utilized by soft computing techniques to handle real-world issues that cannot be palatably handled utilizing conventional computing methods. This paper presents a state-of-the-art review on the recent developments in the use of soft computing in condition-based maintenance in manufacturing.

[1]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[2]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[3]  T. Radhakrishnan,et al.  Milling force prediction using regression and neural networks , 2005, J. Intell. Manuf..

[4]  Y. T. Son,et al.  Study of RCM-based maintenance planning for complex structures using soft computing technique , 2009 .

[5]  Farhad Kolahan,et al.  Optimisation of PM scheduling for multi-component systems – a simulated annealing approach , 2015, Int. J. Syst. Sci..

[6]  A. Azadeh,et al.  Prediction of manufacturing lead time based on Adaptive Neuro-Fuzzy Inference System (ANFIS) , 2011, 2011 International Symposium on Innovations in Intelligent Systems and Applications.

[7]  M. Fesanghary,et al.  Optimization of multi-pass face-milling via harmony search algorithm , 2009 .

[8]  Soumaya Yacout,et al.  LAD-CBM; new data processing tool for diagnosis and prognosis in condition-based maintenance , 2012, J. Intell. Manuf..

[9]  S. Sitharama Iyengar,et al.  Distributed Sensor Networks , 2004 .

[10]  Yukinori Kakazu,et al.  An Approach to the Analysis of the Basins of the Associative Memory Model Using Genetic Algorithms , 1991, ICGA.

[11]  Benoît Iung,et al.  Methodology for assessing system performance loss within a proactive maintenance framework , 2009, ArXiv.

[12]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[13]  G. S. Yadava,et al.  Applications of artificial intelligence techniques for induction machine stator fault diagnostics: review , 2003, 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003..

[14]  B. S. Pabla,et al.  The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review , 2016 .

[15]  Kusum Deep,et al.  Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011 - Volume 1 , 2012, SocProS.

[16]  B. S. Pabla,et al.  Condition Monitoring Parameters for Fault Diagnosis of Fixed Axis Gearbox: A Review , 2017 .

[17]  Yongyong He,et al.  Evolutionary strategy for classification problems and its application in fault diagnostics , 2003 .

[18]  Angelos P. Markopoulos,et al.  Artificial neural network models for the prediction of surface roughness in electrical discharge machining , 2008, J. Intell. Manuf..

[19]  Enrico Sciubba,et al.  Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems , 2004 .

[20]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[21]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[22]  Pramod K. Varshney,et al.  Sensor Fusion , 2014, Computer Vision, A Reference Guide.

[23]  Kusum Deep,et al.  Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011 - Volume 2 , 2012, SocProS.

[24]  M. Farid Golnaraghi,et al.  Prognosis of machine health condition using neuro-fuzzy systems , 2004 .

[25]  M. S. Shunmugam,et al.  Selection of optimal conditions in multi-pass face-milling using a genetic algorithm , 2000 .

[26]  Robert X. Gao,et al.  A new paradigm of cloud-based predictive maintenance for intelligent manufacturing , 2015, Journal of Intelligent Manufacturing.

[27]  M. Watson,et al.  Fuzzy inference and fusion for health state diagnosis of hydraulic pumps and motors , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[28]  James J. Buckley,et al.  Hybrid neural nets can be fuzzy controllers and fuzzy expert systems , 1993 .

[29]  Luca Podofillini,et al.  Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation , 2002, Reliab. Eng. Syst. Saf..

[30]  Satish C. Sharma,et al.  Fault diagnosis of ball bearings using machine learning methods , 2011, Expert Syst. Appl..

[31]  Brian W. Surgenor,et al.  SURFACE ROUGHNESS IN GRINDING : ON-LINE PREDICTION WITH ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM , 2005 .

[32]  Harun Resit Yazgan,et al.  Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem , 2015 .

[33]  Qiao Hu,et al.  Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs , 2007 .

[34]  Corneliu Lazar,et al.  Vision-Guided Robot Manipulation Predictive Control for Automating Manufacturing , 2014, Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics.

[35]  Paulo Leitão,et al.  Integration of virtual and real environments for engineering service-oriented manufacturing systems , 2011, Journal of Intelligent Manufacturing.

[36]  Mitsuo Gen,et al.  A method for maintenance scheduling using GA combined with SA , 1994 .

[37]  Robert Fullér,et al.  Introduction to neuro-fuzzy systems , 1999, Advances in soft computing.

[38]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[39]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[40]  Brigitte Chebel-Morello,et al.  Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals , 2015 .

[41]  Farouk Yalaoui,et al.  Parameter’s setting of the ant colony algorithm applied in preventive maintenance optimization , 2007, J. Intell. Manuf..

[42]  Lin Zhu,et al.  Ant colony optimization for continuous domains , 2012, 2012 8th International Conference on Natural Computation.

[43]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[44]  M. Farid Golnaraghi,et al.  A neuro-fuzzy approach to gear system monitoring , 2004, IEEE Transactions on Fuzzy Systems.

[45]  Jay Lee,et al.  Intelligent prognostics tools and e-maintenance , 2006, Comput. Ind..

[46]  Aloysius George,et al.  Fuzzy Aided Ant Colony Optimization Algorithm to Solve Optimization Problem , 2012, ISI.

[47]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[48]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[49]  Farouk Yalaoui,et al.  New methods to minimize the preventive maintenance cost of series-parallel systems using ant colony optimization , 2005, Reliab. Eng. Syst. Saf..

[50]  K. I. Ramachandran,et al.  Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM) , 2010, Appl. Soft Comput..

[51]  Samuel H. Huang,et al.  Adaptive Mamdani fuzzy model for condition-based maintenance , 2007, Fuzzy Sets Syst..

[52]  Xiao Zhi Gao,et al.  Intelligent Motor Fault Diagnosis Using a Modififed ANFIS , 2001, Int. J. Comput. Their Appl..

[53]  Donald E. Brown,et al.  Fast generic selection of features for neural network classifiers , 1992, IEEE Trans. Neural Networks.

[54]  Asoke K. Nandi,et al.  Genetic algorithms for feature selection in machine condition monitoring with vibration signals , 2000 .

[55]  Lei Xie,et al.  Research on an integrated ICA-SVM based framework for fault diagnosis , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[56]  Massimo Ruzzene,et al.  Computational Techniques for Structural Health Monitoring , 2011 .

[57]  Arvin Agah,et al.  Machine tool positioning error compensation using artificial neural networks , 2008, Eng. Appl. Artif. Intell..

[58]  Lionel Amodeo,et al.  Bi-Objective Ant Colony Optimization approach to optimize production and maintenance scheduling , 2010, Comput. Oper. Res..

[59]  Mesut Kumru,et al.  A fuzzy ANP model for the selection of 3D coordinate-measuring machine , 2015, J. Intell. Manuf..

[60]  Mo-Yuen Chow Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection , 1998 .

[61]  B. Samanta,et al.  Gear fault detection using artificial neural networks and support vector machines with genetic algorithms , 2004 .

[62]  Sheng Zhang,et al.  Fault Diagnosis System for Rotary Machine Based on Fuzzy Neural Networks , 2003 .

[63]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[64]  Ratna Babu Chinnam,et al.  A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems , 2004 .

[65]  Mohamed Benbouzid,et al.  A simple fuzzy logic approach for induction motors stator condition monitoring , 2001, IEMDC 2001. IEEE International Electric Machines and Drives Conference (Cat. No.01EX485).

[66]  Uday S. Dixit,et al.  Application of soft computing techniques in machining performance prediction and optimization: a literature review , 2010 .

[67]  Robin R. Murphy,et al.  Sensor fusion , 1998 .

[68]  Chong Nam Chu,et al.  Prediction of drill failure using features extraction in time and frequency domains of feed motor current , 2008 .

[69]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[70]  Adamantios Mettas,et al.  Reliability allocation and optimization for complex systems , 2000, Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055).

[71]  Chiman Kwan,et al.  An integrated approach to bearing fault diagnostics and prognostics , 2005, Proceedings of the 2005, American Control Conference, 2005..

[72]  A. K. Wadhwani,et al.  Application of ANN, Fuzzy Logic and Wavelet Transform in machine fault diagnosis using vibration signal analysis , 2010 .

[73]  B. Chandra Mohan,et al.  A survey: Ant Colony Optimization based recent research and implementation on several engineering domain , 2012, Expert Syst. Appl..

[74]  Ehram Safari,et al.  A hybrid method for flowshops scheduling with condition-based maintenance constraint and machines breakdown , 2011, Expert Syst. Appl..

[75]  Ashraf Saad,et al.  Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems , 2007, Appl. Soft Comput..

[76]  B. Samanta,et al.  Prognostics of machine condition using soft computing , 2008 .

[77]  Sheng-Fa Yuan,et al.  Fault diagnostics based on particle swarm optimisation and support vector machines , 2007 .

[78]  A. F. Stronach,et al.  Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks , 2002 .

[79]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[80]  Ajith Abraham,et al.  Adaptation of Fuzzy Inference System Using Neural Learning , 2005 .

[81]  Guang-Fu Ma,et al.  Fault diagnosis of diesel engine combustion system based on neural networks , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[82]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[83]  K. F. Martin,et al.  A review by discussion of condition monitoring and fault diagnosis in machine tools , 1994 .

[84]  Fiorenzo Filippetti,et al.  Recent developments of induction motor drives fault diagnosis using AI techniques , 2000, IEEE Trans. Ind. Electron..

[85]  Asoke K. Nandi,et al.  Support vector machines for detection and characterization of rolling element bearing faults , 2001 .

[86]  I. S. Jawahir,et al.  Predicting total machining performance in finish turning using integrated fuzzy-set models of the machinability parameters , 1994 .

[87]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[88]  Marco Dorigo,et al.  From Natural to Artificial Swarm Intelligence , 1999 .

[89]  Qing Zhao,et al.  Machine vibration prediction using ANFIS and wavelet packet decomposition , 2012, Int. J. Model. Identif. Control..

[90]  Ibrahim N. Tansel,et al.  Genetic tool monitor (GTM) for micro-end-milling operations , 2005 .

[91]  J. Orbach Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. , 1962 .

[92]  Rui Silva,et al.  TOOL WEAR MONITORING OF TURNING OPERATIONS BY NEURAL NETWORK AND EXPERT SYSTEM CLASSIFICATION OF A FEATURE SET GENERATED FROM MULTIPLE SENSORS , 1998 .

[93]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[94]  S. Poyhonen,et al.  Signal processing of vibrations for condition monitoring of an induction motor , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..

[95]  S. N. Sivanandam,et al.  Introduction to genetic algorithms , 2007 .

[96]  Stamatis Karnouskos,et al.  Dynamic e-Maintenance in the era of SOA-ready device dominated industrial environments , 2010 .

[97]  Sheng Zhang,et al.  Fault diagnosis system for rotary machines based on fuzzy neural networks , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[98]  Marti A. Hearst Intelligent Connections: Battling with GA-Joe. , 1998 .

[99]  Chwen-Tzeng Su,et al.  A modified particle swarm optimization algorithm for a single-machine scheduling problem with periodic maintenance , 2010, Expert Syst. Appl..

[100]  Michael A. Rosenman,et al.  Artificial intelligence: Engineering , 1991 .

[101]  Y Shao,et al.  Prognosis of remaining bearing life using neural networks , 2000 .

[102]  B. S. Pabla,et al.  Condition based maintenance of machine tools—A review , 2015 .

[103]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[104]  M. S. Lebold,et al.  Hybrid reasoning for prognostic learning in CBM systems , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[105]  S. Li,et al.  FUZZY CLUSTERING FOR AUTOMATED TOOL CONDITION MONITORING IN MACHINING , 1996 .

[106]  L. L. Zhang,et al.  Optimal placement of sensors for structural health monitoring using improved genetic algorithms , 2004 .

[107]  N. Suresh Kumar Reddy,et al.  Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms , 2006 .

[108]  Xiao Zhi Gao,et al.  Soft computing methods in motor fault diagnosis , 2001, Appl. Soft Comput..

[109]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[110]  Chandrasekhar Nataraj,et al.  Use of particle swarm optimization for machinery fault detection , 2009, Eng. Appl. Artif. Intell..

[111]  Vasile Palade,et al.  A novel fuzzy classification solution for fault diagnosis , 2004, J. Intell. Fuzzy Syst..

[112]  Filippo Emanuele Ciarapica,et al.  Managing the condition-based maintenance of a combined-cycle power plant : An approach using soft computing techniques , 2006 .

[113]  Chung-Ho Wang,et al.  Improved particle swarm optimization to minimize periodic preventive maintenance cost for series-parallel systems , 2011, Expert Syst. Appl..

[114]  A. Davies,et al.  Management guide to condition monitoring in manufacture , 1990 .

[115]  Tien-I Liu,et al.  Tool condition monitoring (TCM) using neural networks , 2015 .

[116]  Ship-Peng Lo The Application of an ANFIS and Grey System Method in Turning Tool-Failure Detection , 2002 .

[117]  Peter W. Tse,et al.  Prediction of Machine Deterioration Using Vibration Based Fault Trends and Recurrent Neural Networks , 1999 .

[118]  Bernhard Scholkopf,et al.  Support Vector Machines: A Practical Consequence of Learning Theory , 1998 .

[119]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[120]  Jae-Seob Kwak,et al.  Neural network approach for diagnosis of grinding operation by acoustic emission and power signals , 2004 .

[121]  W. Klingenberg,et al.  Typology of condition based maintenance , 2011 .

[122]  Rodolfo E. Haber,et al.  Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process , 2010, Journal of Intelligent Manufacturing.

[123]  Peter Vas,et al.  Artificial-Intelligence-Based Electrical Machines and Drives: Application of Fuzzy, Neural, Fuzzy-neural, and Genetic-Algorithm-based Techniques , 1999 .

[124]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[125]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[126]  Uday S. Dixit,et al.  Intelligent Machining: Computational Methods and Optimization , 2008 .

[127]  Chris K. Mechefske,et al.  OBJECTIVE MACHINERY FAULT DIAGNOSIS USING FUZZY LOGIC , 1998 .

[128]  Massimo Ruzzene,et al.  Use of Soft Computing Tools for Damage Detection , 2011 .

[129]  Ship-Peng Lo,et al.  An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling , 2003 .

[130]  K. L. Butler An expert system based framework for an incipient failure detection and predictive maintenance system , 1996, Proceedings of International Conference on Intelligent System Application to Power Systems.

[131]  Richard Lippmann,et al.  Using Genetic Algorithms to Improve Pattern Classification Performance , 1990, NIPS.

[132]  Uday S. Dixit,et al.  Modeling of Metal Forming and Machining Processes: by Finite Element and Soft Computing Methods (Engineering Materials and Processes) (Engineering Materials and Processes) , 2008 .

[133]  Celso Marcelo Franklin Lapa,et al.  A Particle Swarm Optimization (PSO) approach for non-periodic preventive maintenance scheduling programming , 2010 .

[134]  Bernd Freisleben,et al.  Time-constrained services: a framework for using real-time web services in industrial automation , 2009, Service Oriented Computing and Applications.

[135]  Pingyu Jiang,et al.  Development of SOA Based Equipments Maintenance Decision Support System , 2008, ICIRA.

[136]  De-Shuang Huang,et al.  Advanced Intelligent Computing Theories and Applications - 6th International Conference on Intelligent Computing, ICIC 2010, Changsha, China, August 18-21, 2010. Proceedings , 2010, ICIC.

[137]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[138]  Siwaporn Kunnapapdeelert,et al.  Optimal cutting condition determination for desired surface roughness in end milling , 2009 .

[139]  George Vachtsevanos,et al.  A Novel Architecture for an Integrated Fault Diagnostic/Prognostic System , 2002 .

[140]  Ronald C. Suich Reliability and cost: Questions for the engineer , 1997 .

[141]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[142]  Jin Chen,et al.  SOA-based remote condition monitoring and fault diagnosis system , 2010 .