Synthesis of Quantum Antennas for Shaping Field Correlations

In studying the practical design of a quantum antenna with given spatial correlations, the authors show that the antenna's initial quantum state is at least as important as the spatial current distributions. Applying their state-inference procedure to a simple antenna (a linear one-dimensional array of equidistant quantum dots, trapped atoms, or superconducting qubits), they synthesize the initial states to generate drastically different emitted fields, for co- and contradirectionally entangled photons, complete suppression in the far field, or a nearly homogeneous far-field distribution---pointing to a host of applications in quantum optics and photonics.

[1]  Amir Boag,et al.  Quantum nonreciprocity of nanoscale antenna arrays in timed Dicke states. , 2013, Physical review letters.

[2]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[3]  S. Kielich,et al.  Quantum beats and superradiant effects in the spontaneous emission from two nonidentical atoms , 1987 .

[4]  A. J. Devaney,et al.  Radiating and nonradiating classical current distributions and the fields they generate , 1973 .

[5]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[6]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[7]  Lukin,et al.  Quantum entanglement via optical control of atom-atom interactions , 2000, Physical review letters.

[8]  Vincenzo Tamma,et al.  Spatial interference between pairs of disjoint optical paths with a single chaotic source. , 2016, Optics express.

[9]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[10]  G. Miano,et al.  Anomalous electromagnetic coupling via entanglement at the nanoscale , 2017, New Journal of Physics.

[11]  F. Bass,et al.  Strong electron-photon coupling in a one-dimensional quantum dot chain: Rabi waves and Rabi wave packets , 2009, 0907.3191.

[12]  W. Pernice,et al.  Beaming light from a quantum emitter with a planar optical antenna , 2016, Light, science & applications.

[13]  F. Bass,et al.  Mixed states in Rabi waves and quantum nanoantennas , 2012 .

[14]  G. S. Agarwal,et al.  Quantum-interference-initiated superradiant and subradiant emission from entangled atoms , 2011, 1104.2989.

[15]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[16]  Z Hradil,et al.  Biased tomography schemes: an objective approach. , 2006, Physical review letters.

[17]  Gregory Ya. Slepyan,et al.  Heisenberg uncertainty principle and light squeezing in quantum nanoantennas and electric circuits , 2016 .

[18]  D. Boiko,et al.  Superradiance dynamics in semiconductor laser diode structures. , 2012, Optics express.

[19]  J. Danzl,et al.  Inducing transport in a dissipation-free lattice with super Bloch oscillations. , 2010, Physical review letters.

[20]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[21]  G. Agarwal,et al.  Superbunching and Nonclassicality as new Hallmarks of Superradiance , 2015, Scientific Reports.

[22]  Aephraim M. Steinberg,et al.  Scalable spatial super-resolution using entangled photons , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[23]  M. Scully,et al.  Directed spontaneous emission from an extended ensemble of N atoms: timing is everything. , 2006, Physical review letters.

[24]  J. Reichel,et al.  Bloch Oscillations of Atoms in an Optical Potential , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[25]  L. Novotný,et al.  Antennas for light , 2011 .

[26]  P. Kok,et al.  Superresolving multiphoton interferences with independent light sources. , 2012, Physical review letters.

[27]  Zdenek Hradil,et al.  Objective approach to biased tomography schemes , 2007 .

[28]  Jean-Jacques Greffet,et al.  Impedance of a nanoantenna and a single quantum emitter. , 2010, Physical review letters.

[29]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[30]  Z. Ficek,et al.  Entangling two atoms via spontaneous emission , 2003, quant-ph/0307045.

[31]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[32]  G. Slepyan,et al.  Collective spontaneous emission in coupled quantum dots : physical mechanism of quantum nanoantenna , 2012 .

[33]  L. Kuipers,et al.  Nanophotonic control of circular dipole emission , 2015, Nature Communications.

[34]  Anton Classen,et al.  Superresolving Imaging of Arbitrary One-Dimensional Arrays of Thermal Light Sources Using Multiphoton Interference. , 2016, Physical review letters.

[35]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[36]  S. Nam,et al.  Modeling Bloch oscillations in nanoscale Josephson junctions. , 2017, Physical review. B.