A Posteriori Finite Element Error Control for the P-Laplace Problem

Three a posteriori error estimates are discussed for the p-Laplace problem as a model equation for nonquadratic growth of order p>2. The standard residual-based error estimate is addressed with emphasis on involved constants determined as local eigenvalues. Up to errors in their numerical computation, they provide a guaranteed upper bound for the W1,p seminorm and a weighted W1,2 seminorm of u-uh under the major assumption that $|\nabla u_h|$ is positive. A second, sharper, a posteriori estimate is based on the numerical solution of local interface problems. Averaging techniques for a posteriori error control on the flux error motivate a third estimator. The results are presented for any shape regular but unstructured triangulation into triangles. They partly rely on a positive weight function $\rho:=(|\nabla u|^{p-2} + |\nabla u_h|^{p-2})/2$ similar to the notion of quasi norms due to Barrett and Liu. Numerical experiments indicate the surprising accuracy of our averaging error estimators, confirm our estimates, and allow for a comparison.

[1]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .

[2]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[3]  Wenbin Liu,et al.  Quasi-Norm Local Error Estimators for p-Laplacian , 2001, SIAM J. Numer. Anal..

[4]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[5]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[6]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[7]  S. Chow Finite element error estimates for non-linear elliptic equations of monotone type , 1989 .

[8]  Wenbin Liu,et al.  On Quasi-Norm Interpolation Error Estimation And A Posteriori Error Estimates for p-Laplacian , 2002, SIAM J. Numer. Anal..

[9]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[10]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..

[11]  Carsten Carstensen,et al.  Numerical solution of the scalar double-well problem allowing microstructure , 1997, Math. Comput..

[12]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[13]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[14]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[17]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[18]  Wenbin Liu,et al.  Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian , 2001, Numerische Mathematik.

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[21]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[22]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .