Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit

With recent advances in device design, single-junction GaAs solar cells are approaching their theoretical efficiency limits. Accurate numerical simulation may offer insights that can help close the remaining gap between the practical and theoretical limits. Significant care must be taken, however, to ensure that the simulation is self-consistent and properly comprehends thermodynamic limits. In this paper, we use rigorous photon recycling simulation coupled with carrier transport simulation to identify the dominant loss mechanisms that limit the performance of thin-film GaAs solar cells.

[1]  Y. P. Varshni Band-to-Band Radiative Recombination in Groups IV, VI, and III-V Semiconductors (II) , 1967 .

[2]  W. Shockley,et al.  Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .

[3]  M. Melloch,et al.  Influence of perimeter recombination on high-efficiency GaAs p/n heteroface solar cells , 1988, IEEE Electron Device Letters.

[4]  E. Yablonovitch Statistical ray optics , 1982 .

[5]  H. Casey,et al.  Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .

[6]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[7]  W. Marsden I and J , 2012 .

[8]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[9]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[10]  Frank Stern,et al.  Photon recycling in semiconductor lasers , 1974 .

[11]  M. Melloch,et al.  Orientation‐dependent perimeter recombination in GaAs diodes , 1990 .

[12]  Linlin Yang,et al.  New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[13]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[14]  M. Lundstrom,et al.  Thin film approaches for high-efficiency III–V cells , 1991 .

[15]  A. Rohatgi,et al.  Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells , 1993 .

[16]  J. Nelson The physics of solar cells , 2003 .

[17]  Fundamentals of PV efficiency interpreted by a two-level model , 2012, 1205.6652.

[18]  Eli Yablonovitch,et al.  Effects of perimeter recombination on GaAs-based solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[19]  R. T. Ross,et al.  Some Thermodynamics of Photochemical Systems , 1967 .

[20]  P. Asbeck Self‐absorption effects on the radiative lifetime in GaAs‐GaAlAs double heterostructures , 1977 .

[21]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[22]  Michael R. Melloch,et al.  Surface and perimeter recombination in GaAs diodes: an experimental and theoretical investigation , 1991 .

[23]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[24]  J. E. Parrott,et al.  Radiative recombination and photon recycling in photovoltaic solar cells , 1993 .

[25]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[26]  Wang Xiaodong,et al.  Optimization of grid design for solar cells , 2010 .

[27]  Harry A. Atwater,et al.  Paths to high efficiency low-cost photovoltaics , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[28]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .