Computational study of the syn,anti-selective aldol additions of lithiated bis-lactim ether to 1,3-dioxolane-4-carboxaldehydes

Abstract Ab initio (RHF/6-31G*) and two-layer hybrid ab initio:semi-empirical (ONIOM) calculations were carried out to investigate the syn , anti -selective aldol additions of lithiated Schollkopf′s bis-lactim ether to 1,3-dioxolane-4-carboxaldehydes. Initial lithium–carbonyl coordination to form a disolvated complex with 4.6–8.4 kcal/mol exothermicity is followed by the rate-determining reorganization to the aldolate products through six-membered chair-like transition structures. The experimental stereoselectivities of the aldol additions have been adequately reproduced. According to the calculations, the most stable transition structures are characterized by a non-Anh conformation of the aldehyde moiety. In addition, the β-methyl substituent of the aldehyde, trans to the carbonyl group, is found to increase the energy barrier of the competitive pathways, thus reinforcing the syn , anti -stereoselection of the aldol process.

[1]  F. Romesberg,et al.  MECHANISM OF LITHIUM DIALKYLAMIDE-MEDIATED KETONE AND IMINE DEPROTONATIONS: AN MNDO STUDY OF MONOMER AND OPEN DIMER PATHWAYS , 1995 .

[2]  T. Furuta,et al.  Catalytic Asymmetric Syntheses of Antifungal Sphingofungins and Their Biological Activity as Potent Inhibitors of Serine Palmitoyltransferase (SPT) , 1998 .

[3]  Clayton H. Heathcock,et al.  Acyclic stereoselection. 40. Steric effects, as well as .sigma.*-orbital energies, are important in diastereoface differentiation in additions to chiral aldehydes , 1987 .

[4]  M. Chérest,et al.  Torsional strain involving partial bonds. The stereochemistry of the lithium aluminium hydride reduction of some simple open-chain ketones , 1968 .

[5]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[6]  M. Mckee A theoretical study of proton transfer in lithium-carbonyl and lithium-enolate complexes , 1987 .

[7]  W. Roush CONCERNING THE DIASTEREOFACIAL SELECTIVITY OF THE ALDOL REACTIONS OF ALPHA-METHYL CHIRAL ALDEHYDES AND LITHIUM AND BORON PROPIONATE ENOLATES , 1991 .

[8]  L. Radom,et al.  Scaling Factors for Obtaining Fundamental Vibrational Frequencies and Zero-Point Energies from HF/6–31G* and MP2/6–31G* Harmonic Frequencies , 1993 .

[9]  U. Schőllkopf,et al.  Asymmetric syntheses of amino acids via metalated bis-lactim ethers of 2,5-diketopiperazines , 1983 .

[10]  U. Groth,et al.  Asymmetrische Synthesen über heterocyclische Zwischenstufen, X. Enantioselektive Synthese von (2R)‐2‐Methylserinen , 1981 .

[11]  K N Houk,et al.  Transition states of amine-catalyzed aldol reactions involving enamine intermediates: theoretical studies of mechanism, reactivity, and stereoselectivity. , 2001, Journal of the American Chemical Society.

[12]  Guido Bold,et al.  Stereoselektive Synthese von (2S,6S)-2,6-Diaminoheptandisäure und von unsymmetrischen Derivaten der meso-2,6-Diaminoheptandisäure , 1992 .

[13]  Robert G. Parr,et al.  Density Functional Theory of Electronic Structure , 1996 .

[14]  P. Schleyer,et al.  Ab Initio and Semiempirical Study of the Effect of Ethereal Solvent on Aggregation of a Lithium Enolate , 1997 .

[15]  M. Grauert,et al.  Asymmetric Syntheses via Heterocyclic Intermediates, XXVII. Reactions of Metallated Bislactim Ethers of cyclo(-L-Val-Gly-) with (R)- and (S)-Glyceraldehyde and with (S)-Lactaldehyde , 1985 .

[16]  H. Zimmerman,et al.  The Stereochemistry of the Ivanov and Reformatsky Reactions. I , 1957 .

[17]  P. Arvidsson,et al.  Toward Solution-State Structure. A 6Li,1H HOESY NMR, X-ray Diffraction, Semiempirical (PM3, MNDO), and ab Initio Computational Study of a Chiral Lithium Amide , 1998 .

[18]  K. Morokuma,et al.  On the application of the IMOMO (integrated molecular orbital + molecular orbital) method , 2000 .

[19]  J. Vederas,et al.  Synthesis of 3-fluorodiaminopimelic acid isomers as inhibitors of diaminopimelate epimerase: stereocontrolled enzymatic elimination of hydrogen fluoride , 1990 .

[20]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[21]  P. Williard,et al.  X-ray crystal structures of lithium, sodium, and potassium enolates of pinacolone. , 1986, Journal of the American Chemical Society.

[22]  T. Tiller,et al.  Asymmetric synthesis of D-erythro-sphingosine , 1991 .

[23]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[24]  Bouillon,et al.  Theoretical study of intramolecular aldol condensation of 1, 6-diketones: trimethylsilyl substituent effect , 2000, The Journal of organic chemistry.

[25]  J. Nozulak,et al.  Asymmetric syntheses via heterocyclic intermediates-XXII: Enantioselective synthesis of α-alkenyl glycine methyl esters and α-alkenyl glycines (β,γ -unsaturated amino acids) , 1984 .

[26]  A. Streitwieser,et al.  Electron density analysis of the reaction of aldehydes with lithium hydride. The general importance of the HOMO-HOMO interaction , 1986 .

[27]  Krishnan Raghavachari,et al.  Methyllithium and its oligomers. Structural and energetic relationships , 1988 .

[28]  P. Schleyer,et al.  Lithium chemistry : a theoretical and experimental overview , 1995 .

[29]  T. Furuta,et al.  Use of heterocycles as chiral ligands and auxiliaries in asymmetric syntheses of sphingosine, sphingofungins B and F , 1998 .

[30]  U. Groth,et al.  Asymmetrische Synthesen über heterocyclische Zwischenstufen, XVIII. Zur enantioselektiven Synthese von (2RS)-Serin-methylestern oder (2R)-Serinen ausgehend vom Bislactimether von cyclo-(-L-Val-Gly-) , 1983 .

[31]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[32]  C. Heathcock,et al.  Acyclic stereoselection. 39. The origin of diastereofacial selectivity in additions to chiral aldehydes and ketones: trajectory analysis , 1987 .

[33]  F. Romesberg,et al.  Determination of structures of solvated lithium dialkylamides by semiempirical (MNDO) methods. Comparison of theory and experiment , 1992 .

[34]  Lawrence M. Pratt Ishrat M. Khan,et al.  A density functional treatment of organolithium compounds: Comparison to ab initio, semiempirical, and experimental results , 1995, J. Comput. Chem..

[35]  J. Goodman,et al.  Mechanistic insights from ab initio calculations on a nitrogen analogue of the boron-mediated aldol reaction , 1995 .

[36]  Robert M. Williams Synthesis of optically active α-amino acids , 1989 .

[37]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[38]  J. Quintela,et al.  Amino acid based diastereoselective synthesis of fucosamines , 2002 .

[39]  A. Streitwieser,et al.  A MNDO-study of solvent free and solvated dimeric lithium ion pairs of acetaldoxime. Models for dimeric aggregates of lithiated oxime ethers , 1988 .

[40]  F. Rominger,et al.  The Origin of Atropisomerism in 2,2′-Bis((1R,2R,4S)-2-hydroxy-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl)-1,1′-biphenyl: Synthesis, Structure and Energetics , 2000 .

[41]  S. Denmark,et al.  Chemistry of Enoxysilacyclobutanes - Highly Selective Uncatalyzed Aldol Additions , 1994 .

[42]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[43]  J. Quintela,et al.  Asymmetric Synthesis of D-Fucosamine and N-Methyl-D-Fucosamine , 2004 .

[44]  N. Anh Regio- and stereo-selectivities in some nucleophilic reactions , 1980 .

[45]  J. Quintela,et al.  Amino acid based diastereoselective synthesis of elsaminose , 1996 .

[46]  Clayton H. Heathcock,et al.  Acyclic stereoselection. 16. High diastereofacial selectivity in Lewis acid mediated additions of enol silanes to chiral aldehydes , 1983 .

[47]  W. Roush,et al.  Stereochemistry of the reactions of substituted allylboronates with chiral aldehydes. Factors influencing aldehyde diastereofacial selectivity , 1986 .